Metamath Proof Explorer


Theorem stgrfv

Description: The star graph S_N. (Contributed by AV, 10-Sep-2025)

Ref Expression
Assertion stgrfv ( 𝑁 ∈ ℕ0 → ( StarGr ‘ 𝑁 ) = { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑁 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } )

Proof

Step Hyp Ref Expression
1 df-stgr StarGr = ( 𝑛 ∈ ℕ0 ↦ { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑛 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } )
2 1 a1i ( 𝑁 ∈ ℕ0 → StarGr = ( 𝑛 ∈ ℕ0 ↦ { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑛 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } ) )
3 oveq2 ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) )
4 3 opeq2d ( 𝑛 = 𝑁 → ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑛 ) ⟩ = ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑁 ) ⟩ )
5 3 pweqd ( 𝑛 = 𝑁 → 𝒫 ( 0 ... 𝑛 ) = 𝒫 ( 0 ... 𝑁 ) )
6 oveq2 ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) )
7 6 rexeqdv ( 𝑛 = 𝑁 → ( ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } ↔ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } ) )
8 5 7 rabeqbidv ( 𝑛 = 𝑁 → { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } )
9 8 reseq2d ( 𝑛 = 𝑁 → ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) = ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) )
10 9 opeq2d ( 𝑛 = 𝑁 → ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ = ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ )
11 4 10 preq12d ( 𝑛 = 𝑁 → { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑛 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } = { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑁 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } )
12 11 adantl ( ( 𝑁 ∈ ℕ0𝑛 = 𝑁 ) → { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑛 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } = { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑁 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } )
13 id ( 𝑁 ∈ ℕ0𝑁 ∈ ℕ0 )
14 prex { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑁 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } ∈ V
15 14 a1i ( 𝑁 ∈ ℕ0 → { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑁 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } ∈ V )
16 2 12 13 15 fvmptd ( 𝑁 ∈ ℕ0 → ( StarGr ‘ 𝑁 ) = { ⟨ ( Base ‘ ndx ) , ( 0 ... 𝑁 ) ⟩ , ⟨ ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ⟩ } )