Step |
Hyp |
Ref |
Expression |
1 |
|
df-stgr |
⊢ StarGr = ( 𝑛 ∈ ℕ0 ↦ { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑛 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → StarGr = ( 𝑛 ∈ ℕ0 ↦ { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑛 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) ) |
3 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) |
4 |
3
|
opeq2d |
⊢ ( 𝑛 = 𝑁 → 〈 ( Base ‘ ndx ) , ( 0 ... 𝑛 ) 〉 = 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 ) |
5 |
3
|
pweqd |
⊢ ( 𝑛 = 𝑁 → 𝒫 ( 0 ... 𝑛 ) = 𝒫 ( 0 ... 𝑁 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 1 ... 𝑛 ) = ( 1 ... 𝑁 ) ) |
7 |
6
|
rexeqdv |
⊢ ( 𝑛 = 𝑁 → ( ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } ↔ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } ) ) |
8 |
5 7
|
rabeqbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) |
9 |
8
|
reseq2d |
⊢ ( 𝑛 = 𝑁 → ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) = ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ) |
10 |
9
|
opeq2d |
⊢ ( 𝑛 = 𝑁 → 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) 〉 = 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 ) |
11 |
4 10
|
preq12d |
⊢ ( 𝑛 = 𝑁 → { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑛 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } = { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) |
12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 = 𝑁 ) → { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑛 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑛 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑛 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } = { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) |
13 |
|
id |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) |
14 |
|
prex |
⊢ { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ∈ V |
15 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ∈ V ) |
16 |
2 12 13 15
|
fvmptd |
⊢ ( 𝑁 ∈ ℕ0 → ( StarGr ‘ 𝑁 ) = { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) |