Step |
Hyp |
Ref |
Expression |
1 |
|
stgrfv |
⊢ ( 𝑁 ∈ ℕ0 → ( StarGr ‘ 𝑁 ) = { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) |
2 |
1
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( Vtx ‘ { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) ) |
3 |
|
ovex |
⊢ ( 0 ... 𝑁 ) ∈ V |
4 |
|
eqid |
⊢ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } = { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } |
5 |
|
pwexg |
⊢ ( ( 0 ... 𝑁 ) ∈ V → 𝒫 ( 0 ... 𝑁 ) ∈ V ) |
6 |
4 5
|
rabexd |
⊢ ( ( 0 ... 𝑁 ) ∈ V → { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ∈ V ) |
7 |
6
|
resiexd |
⊢ ( ( 0 ... 𝑁 ) ∈ V → ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ∈ V ) |
8 |
3 7
|
ax-mp |
⊢ ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ∈ V |
9 |
3 8
|
pm3.2i |
⊢ ( ( 0 ... 𝑁 ) ∈ V ∧ ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ∈ V ) |
10 |
|
eqid |
⊢ { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } = { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } |
11 |
10
|
struct2grvtx |
⊢ ( ( ( 0 ... 𝑁 ) ∈ V ∧ ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) ∈ V ) → ( Vtx ‘ { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) = ( 0 ... 𝑁 ) ) |
12 |
9 11
|
mp1i |
⊢ ( 𝑁 ∈ ℕ0 → ( Vtx ‘ { 〈 ( Base ‘ ndx ) , ( 0 ... 𝑁 ) 〉 , 〈 ( .ef ‘ ndx ) , ( I ↾ { 𝑒 ∈ 𝒫 ( 0 ... 𝑁 ) ∣ ∃ 𝑥 ∈ ( 1 ... 𝑁 ) 𝑒 = { 0 , 𝑥 } } ) 〉 } ) = ( 0 ... 𝑁 ) ) |
13 |
2 12
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( Vtx ‘ ( StarGr ‘ 𝑁 ) ) = ( 0 ... 𝑁 ) ) |