Metamath Proof Explorer


Definition df-suppos

Description: Define the function that, when given an n -ary operation f and n many m -ary operations ( g(/) ) , ..., ( gU. n ) , returns the superposition of f with the ( gi ) , itself another m -ary operation on a . Given x (a sequence of m arguments in a ), the superposition effectively applies each of the ( gi ) to x , then applies f to the resulting sequence of n function values. This can be seen as a generalized version of function composition; see paragraph 3 of Szendrei p. 11. (Contributed by Adrian Ducourtial, 3-Apr-2025)

Ref Expression
Assertion df-suppos suppos = a V n ω 1 𝑜 , m ω 1 𝑜 f a a n , g a a m n x a m f i n g i x

Detailed syntax breakdown

Step Hyp Ref Expression
0 csuppos class suppos
1 va setvar a
2 cvv class V
3 vn setvar n
4 com class ω
5 c1o class 1 𝑜
6 4 5 cdif class ω 1 𝑜
7 vm setvar m
8 vf setvar f
9 1 cv setvar a
10 cmap class 𝑚
11 3 cv setvar n
12 9 11 10 co class a n
13 9 12 10 co class a a n
14 vg setvar g
15 7 cv setvar m
16 9 15 10 co class a m
17 9 16 10 co class a a m
18 17 11 10 co class a a m n
19 vx setvar x
20 8 cv setvar f
21 vi setvar i
22 14 cv setvar g
23 21 cv setvar i
24 23 22 cfv class g i
25 19 cv setvar x
26 25 24 cfv class g i x
27 21 11 26 cmpt class i n g i x
28 27 20 cfv class f i n g i x
29 19 16 28 cmpt class x a m f i n g i x
30 8 14 13 18 29 cmpo class f a a n , g a a m n x a m f i n g i x
31 3 7 6 6 30 cmpo class n ω 1 𝑜 , m ω 1 𝑜 f a a n , g a a m n x a m f i n g i x
32 1 2 31 cmpt class a V n ω 1 𝑜 , m ω 1 𝑜 f a a n , g a a m n x a m f i n g i x
33 0 32 wceq wff suppos = a V n ω 1 𝑜 , m ω 1 𝑜 f a a n , g a a m n x a m f i n g i x