Metamath Proof Explorer


Definition df-suppos

Description: Define the function that, when given an n -ary operation f and n many m -ary operations ( g(/) ) , ..., ( gU. n ) , returns the superposition of f with the ( gi ) , itself another m -ary operation on a . Given x (a sequence of m arguments in a ), the superposition effectively applies each of the ( gi ) to x , then applies f to the resulting sequence of n function values. This can be seen as a generalized version of function composition; see paragraph 3 of Szendrei p. 11. (Contributed by Adrian Ducourtial, 3-Apr-2025)

Ref Expression
Assertion df-suppos suppos = ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑚 ∈ ( ω ∖ 1o ) ↦ ( 𝑓 ∈ ( 𝑎m ( 𝑎m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎m ( 𝑎m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) ) ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 csuppos suppos
1 va 𝑎
2 cvv V
3 vn 𝑛
4 com ω
5 c1o 1o
6 4 5 cdif ( ω ∖ 1o )
7 vm 𝑚
8 vf 𝑓
9 1 cv 𝑎
10 cmap m
11 3 cv 𝑛
12 9 11 10 co ( 𝑎m 𝑛 )
13 9 12 10 co ( 𝑎m ( 𝑎m 𝑛 ) )
14 vg 𝑔
15 7 cv 𝑚
16 9 15 10 co ( 𝑎m 𝑚 )
17 9 16 10 co ( 𝑎m ( 𝑎m 𝑚 ) )
18 17 11 10 co ( ( 𝑎m ( 𝑎m 𝑚 ) ) ↑m 𝑛 )
19 vx 𝑥
20 8 cv 𝑓
21 vi 𝑖
22 14 cv 𝑔
23 21 cv 𝑖
24 23 22 cfv ( 𝑔𝑖 )
25 19 cv 𝑥
26 25 24 cfv ( ( 𝑔𝑖 ) ‘ 𝑥 )
27 21 11 26 cmpt ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) )
28 27 20 cfv ( 𝑓 ‘ ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) ) )
29 19 16 28 cmpt ( 𝑥 ∈ ( 𝑎m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) ) ) )
30 8 14 13 18 29 cmpo ( 𝑓 ∈ ( 𝑎m ( 𝑎m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎m ( 𝑎m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) ) ) ) )
31 3 7 6 6 30 cmpo ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑚 ∈ ( ω ∖ 1o ) ↦ ( 𝑓 ∈ ( 𝑎m ( 𝑎m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎m ( 𝑎m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) ) ) ) ) )
32 1 2 31 cmpt ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑚 ∈ ( ω ∖ 1o ) ↦ ( 𝑓 ∈ ( 𝑎m ( 𝑎m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎m ( 𝑎m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) ) ) ) ) ) )
33 0 32 wceq suppos = ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑚 ∈ ( ω ∖ 1o ) ↦ ( 𝑓 ∈ ( 𝑎m ( 𝑎m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎m ( 𝑎m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖𝑛 ↦ ( ( 𝑔𝑖 ) ‘ 𝑥 ) ) ) ) ) ) )