Step |
Hyp |
Ref |
Expression |
0 |
|
csuppos |
⊢ suppos |
1 |
|
va |
⊢ 𝑎 |
2 |
|
cvv |
⊢ V |
3 |
|
vn |
⊢ 𝑛 |
4 |
|
com |
⊢ ω |
5 |
|
c1o |
⊢ 1o |
6 |
4 5
|
cdif |
⊢ ( ω ∖ 1o ) |
7 |
|
vm |
⊢ 𝑚 |
8 |
|
vf |
⊢ 𝑓 |
9 |
1
|
cv |
⊢ 𝑎 |
10 |
|
cmap |
⊢ ↑m |
11 |
3
|
cv |
⊢ 𝑛 |
12 |
9 11 10
|
co |
⊢ ( 𝑎 ↑m 𝑛 ) |
13 |
9 12 10
|
co |
⊢ ( 𝑎 ↑m ( 𝑎 ↑m 𝑛 ) ) |
14 |
|
vg |
⊢ 𝑔 |
15 |
7
|
cv |
⊢ 𝑚 |
16 |
9 15 10
|
co |
⊢ ( 𝑎 ↑m 𝑚 ) |
17 |
9 16 10
|
co |
⊢ ( 𝑎 ↑m ( 𝑎 ↑m 𝑚 ) ) |
18 |
17 11 10
|
co |
⊢ ( ( 𝑎 ↑m ( 𝑎 ↑m 𝑚 ) ) ↑m 𝑛 ) |
19 |
|
vx |
⊢ 𝑥 |
20 |
8
|
cv |
⊢ 𝑓 |
21 |
|
vi |
⊢ 𝑖 |
22 |
14
|
cv |
⊢ 𝑔 |
23 |
21
|
cv |
⊢ 𝑖 |
24 |
23 22
|
cfv |
⊢ ( 𝑔 ‘ 𝑖 ) |
25 |
19
|
cv |
⊢ 𝑥 |
26 |
25 24
|
cfv |
⊢ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) |
27 |
21 11 26
|
cmpt |
⊢ ( 𝑖 ∈ 𝑛 ↦ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) ) |
28 |
27 20
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑖 ∈ 𝑛 ↦ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) ) ) |
29 |
19 16 28
|
cmpt |
⊢ ( 𝑥 ∈ ( 𝑎 ↑m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖 ∈ 𝑛 ↦ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |
30 |
8 14 13 18 29
|
cmpo |
⊢ ( 𝑓 ∈ ( 𝑎 ↑m ( 𝑎 ↑m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎 ↑m ( 𝑎 ↑m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎 ↑m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖 ∈ 𝑛 ↦ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) ) |
31 |
3 7 6 6 30
|
cmpo |
⊢ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑚 ∈ ( ω ∖ 1o ) ↦ ( 𝑓 ∈ ( 𝑎 ↑m ( 𝑎 ↑m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎 ↑m ( 𝑎 ↑m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎 ↑m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖 ∈ 𝑛 ↦ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) ) ) |
32 |
1 2 31
|
cmpt |
⊢ ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑚 ∈ ( ω ∖ 1o ) ↦ ( 𝑓 ∈ ( 𝑎 ↑m ( 𝑎 ↑m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎 ↑m ( 𝑎 ↑m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎 ↑m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖 ∈ 𝑛 ↦ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) ) ) ) |
33 |
0 32
|
wceq |
⊢ suppos = ( 𝑎 ∈ V ↦ ( 𝑛 ∈ ( ω ∖ 1o ) , 𝑚 ∈ ( ω ∖ 1o ) ↦ ( 𝑓 ∈ ( 𝑎 ↑m ( 𝑎 ↑m 𝑛 ) ) , 𝑔 ∈ ( ( 𝑎 ↑m ( 𝑎 ↑m 𝑚 ) ) ↑m 𝑛 ) ↦ ( 𝑥 ∈ ( 𝑎 ↑m 𝑚 ) ↦ ( 𝑓 ‘ ( 𝑖 ∈ 𝑛 ↦ ( ( 𝑔 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) ) ) ) |