Metamath Proof Explorer


Definition df-trkg2d

Description: Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of Schwabhauser p. 12, and the upper dimension axiom, Axiom A9 of Schwabhauser p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019) (New usage is discouraged.)

Ref Expression
Assertion df-trkg2d 𝒢Tarski2D=f|[˙Basef/p]˙[˙distf/d]˙[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkg2d class𝒢Tarski2D
1 vf setvarf
2 cbs classBase
3 1 cv setvarf
4 3 2 cfv classBasef
5 vp setvarp
6 cds classdist
7 3 6 cfv classdistf
8 vd setvard
9 citv classItv
10 3 9 cfv classItvf
11 vi setvari
12 vx setvarx
13 5 cv setvarp
14 vy setvary
15 vz setvarz
16 15 cv setvarz
17 12 cv setvarx
18 11 cv setvari
19 14 cv setvary
20 17 19 18 co classxiy
21 16 20 wcel wffzxiy
22 16 19 18 co classziy
23 17 22 wcel wffxziy
24 17 16 18 co classxiz
25 19 24 wcel wffyxiz
26 21 23 25 w3o wffzxiyxziyyxiz
27 26 wn wff¬zxiyxziyyxiz
28 27 15 13 wrex wffzp¬zxiyxziyyxiz
29 28 14 13 wrex wffypzp¬zxiyxziyyxiz
30 29 12 13 wrex wffxpypzp¬zxiyxziyyxiz
31 vu setvaru
32 vv setvarv
33 8 cv setvard
34 31 cv setvaru
35 17 34 33 co classxdu
36 32 cv setvarv
37 17 36 33 co classxdv
38 35 37 wceq wffxdu=xdv
39 19 34 33 co classydu
40 19 36 33 co classydv
41 39 40 wceq wffydu=ydv
42 16 34 33 co classzdu
43 16 36 33 co classzdv
44 42 43 wceq wffzdu=zdv
45 38 41 44 w3a wffxdu=xdvydu=ydvzdu=zdv
46 34 36 wne wffuv
47 45 46 wa wffxdu=xdvydu=ydvzdu=zdvuv
48 47 26 wi wffxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
49 48 32 13 wral wffvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
50 49 31 13 wral wffupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
51 50 15 13 wral wffzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
52 51 14 13 wral wffypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
53 52 12 13 wral wffxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
54 30 53 wa wffxpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
55 54 11 10 wsbc wff[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
56 55 8 7 wsbc wff[˙distf/d]˙[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
57 56 5 4 wsbc wff[˙Basef/p]˙[˙distf/d]˙[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
58 57 1 cab classf|[˙Basef/p]˙[˙distf/d]˙[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz
59 0 58 wceq wff𝒢Tarski2D=f|[˙Basef/p]˙[˙distf/d]˙[˙Itvf/i]˙xpypzp¬zxiyxziyyxizxpypzpupvpxdu=xdvydu=ydvzdu=zdvuvzxiyxziyyxiz