Description: Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of Schwabhauser p. 12, and the upper dimension axiom, Axiom A9 of Schwabhauser p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-trkg2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cstrkg2d | |
|
1 | vf | |
|
2 | cbs | |
|
3 | 1 | cv | |
4 | 3 2 | cfv | |
5 | vp | |
|
6 | cds | |
|
7 | 3 6 | cfv | |
8 | vd | |
|
9 | citv | |
|
10 | 3 9 | cfv | |
11 | vi | |
|
12 | vx | |
|
13 | 5 | cv | |
14 | vy | |
|
15 | vz | |
|
16 | 15 | cv | |
17 | 12 | cv | |
18 | 11 | cv | |
19 | 14 | cv | |
20 | 17 19 18 | co | |
21 | 16 20 | wcel | |
22 | 16 19 18 | co | |
23 | 17 22 | wcel | |
24 | 17 16 18 | co | |
25 | 19 24 | wcel | |
26 | 21 23 25 | w3o | |
27 | 26 | wn | |
28 | 27 15 13 | wrex | |
29 | 28 14 13 | wrex | |
30 | 29 12 13 | wrex | |
31 | vu | |
|
32 | vv | |
|
33 | 8 | cv | |
34 | 31 | cv | |
35 | 17 34 33 | co | |
36 | 32 | cv | |
37 | 17 36 33 | co | |
38 | 35 37 | wceq | |
39 | 19 34 33 | co | |
40 | 19 36 33 | co | |
41 | 39 40 | wceq | |
42 | 16 34 33 | co | |
43 | 16 36 33 | co | |
44 | 42 43 | wceq | |
45 | 38 41 44 | w3a | |
46 | 34 36 | wne | |
47 | 45 46 | wa | |
48 | 47 26 | wi | |
49 | 48 32 13 | wral | |
50 | 49 31 13 | wral | |
51 | 50 15 13 | wral | |
52 | 51 14 13 | wral | |
53 | 52 12 13 | wral | |
54 | 30 53 | wa | |
55 | 54 11 10 | wsbc | |
56 | 55 8 7 | wsbc | |
57 | 56 5 4 | wsbc | |
58 | 57 1 | cab | |
59 | 0 58 | wceq | |