Step |
Hyp |
Ref |
Expression |
0 |
|
cstrkg2d |
⊢ TarskiG2D |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
cbs |
⊢ Base |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
3 2
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
5 |
|
vp |
⊢ 𝑝 |
6 |
|
cds |
⊢ dist |
7 |
3 6
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
8 |
|
vd |
⊢ 𝑑 |
9 |
|
citv |
⊢ Itv |
10 |
3 9
|
cfv |
⊢ ( Itv ‘ 𝑓 ) |
11 |
|
vi |
⊢ 𝑖 |
12 |
|
vx |
⊢ 𝑥 |
13 |
5
|
cv |
⊢ 𝑝 |
14 |
|
vy |
⊢ 𝑦 |
15 |
|
vz |
⊢ 𝑧 |
16 |
15
|
cv |
⊢ 𝑧 |
17 |
12
|
cv |
⊢ 𝑥 |
18 |
11
|
cv |
⊢ 𝑖 |
19 |
14
|
cv |
⊢ 𝑦 |
20 |
17 19 18
|
co |
⊢ ( 𝑥 𝑖 𝑦 ) |
21 |
16 20
|
wcel |
⊢ 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) |
22 |
16 19 18
|
co |
⊢ ( 𝑧 𝑖 𝑦 ) |
23 |
17 22
|
wcel |
⊢ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) |
24 |
17 16 18
|
co |
⊢ ( 𝑥 𝑖 𝑧 ) |
25 |
19 24
|
wcel |
⊢ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) |
26 |
21 23 25
|
w3o |
⊢ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
27 |
26
|
wn |
⊢ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
28 |
27 15 13
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
29 |
28 14 13
|
wrex |
⊢ ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
30 |
29 12 13
|
wrex |
⊢ ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) |
31 |
|
vu |
⊢ 𝑢 |
32 |
|
vv |
⊢ 𝑣 |
33 |
8
|
cv |
⊢ 𝑑 |
34 |
31
|
cv |
⊢ 𝑢 |
35 |
17 34 33
|
co |
⊢ ( 𝑥 𝑑 𝑢 ) |
36 |
32
|
cv |
⊢ 𝑣 |
37 |
17 36 33
|
co |
⊢ ( 𝑥 𝑑 𝑣 ) |
38 |
35 37
|
wceq |
⊢ ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) |
39 |
19 34 33
|
co |
⊢ ( 𝑦 𝑑 𝑢 ) |
40 |
19 36 33
|
co |
⊢ ( 𝑦 𝑑 𝑣 ) |
41 |
39 40
|
wceq |
⊢ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) |
42 |
16 34 33
|
co |
⊢ ( 𝑧 𝑑 𝑢 ) |
43 |
16 36 33
|
co |
⊢ ( 𝑧 𝑑 𝑣 ) |
44 |
42 43
|
wceq |
⊢ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) |
45 |
38 41 44
|
w3a |
⊢ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) |
46 |
34 36
|
wne |
⊢ 𝑢 ≠ 𝑣 |
47 |
45 46
|
wa |
⊢ ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) |
48 |
47 26
|
wi |
⊢ ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
49 |
48 32 13
|
wral |
⊢ ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
50 |
49 31 13
|
wral |
⊢ ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
51 |
50 15 13
|
wral |
⊢ ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
52 |
51 14 13
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
53 |
52 12 13
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) |
54 |
30 53
|
wa |
⊢ ( ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
55 |
54 11 10
|
wsbc |
⊢ [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
56 |
55 8 7
|
wsbc |
⊢ [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
57 |
56 5 4
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) |
58 |
57 1
|
cab |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) } |
59 |
0 58
|
wceq |
⊢ TarskiG2D = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥 ∈ 𝑝 ∃ 𝑦 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) } |