Metamath Proof Explorer


Definition df-trkg2d

Description: Define the class of geometries fulfilling the lower dimension axiom, Axiom A8 of Schwabhauser p. 12, and the upper dimension axiom, Axiom A9 of Schwabhauser p. 13, for dimension 2. (Contributed by Thierry Arnoux, 14-Mar-2019) (New usage is discouraged.)

Ref Expression
Assertion df-trkg2d TarskiG2D = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkg2d TarskiG2D
1 vf 𝑓
2 cbs Base
3 1 cv 𝑓
4 3 2 cfv ( Base ‘ 𝑓 )
5 vp 𝑝
6 cds dist
7 3 6 cfv ( dist ‘ 𝑓 )
8 vd 𝑑
9 citv Itv
10 3 9 cfv ( Itv ‘ 𝑓 )
11 vi 𝑖
12 vx 𝑥
13 5 cv 𝑝
14 vy 𝑦
15 vz 𝑧
16 15 cv 𝑧
17 12 cv 𝑥
18 11 cv 𝑖
19 14 cv 𝑦
20 17 19 18 co ( 𝑥 𝑖 𝑦 )
21 16 20 wcel 𝑧 ∈ ( 𝑥 𝑖 𝑦 )
22 16 19 18 co ( 𝑧 𝑖 𝑦 )
23 17 22 wcel 𝑥 ∈ ( 𝑧 𝑖 𝑦 )
24 17 16 18 co ( 𝑥 𝑖 𝑧 )
25 19 24 wcel 𝑦 ∈ ( 𝑥 𝑖 𝑧 )
26 21 23 25 w3o ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) )
27 26 wn ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) )
28 27 15 13 wrex 𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) )
29 28 14 13 wrex 𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) )
30 29 12 13 wrex 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) )
31 vu 𝑢
32 vv 𝑣
33 8 cv 𝑑
34 31 cv 𝑢
35 17 34 33 co ( 𝑥 𝑑 𝑢 )
36 32 cv 𝑣
37 17 36 33 co ( 𝑥 𝑑 𝑣 )
38 35 37 wceq ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 )
39 19 34 33 co ( 𝑦 𝑑 𝑢 )
40 19 36 33 co ( 𝑦 𝑑 𝑣 )
41 39 40 wceq ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 )
42 16 34 33 co ( 𝑧 𝑑 𝑢 )
43 16 36 33 co ( 𝑧 𝑑 𝑣 )
44 42 43 wceq ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 )
45 38 41 44 w3a ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) )
46 34 36 wne 𝑢𝑣
47 45 46 wa ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 )
48 47 26 wi ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
49 48 32 13 wral 𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
50 49 31 13 wral 𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
51 50 15 13 wral 𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
52 51 14 13 wral 𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
53 52 12 13 wral 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
54 30 53 wa ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
55 54 11 10 wsbc [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
56 55 8 7 wsbc [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
57 56 5 4 wsbc [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
58 57 1 cab { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) }
59 0 58 wceq TarskiG2D = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) }