Metamath Proof Explorer


Theorem istrkg2d

Description: Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses istrkg2d.p 𝑃 = ( Base ‘ 𝐺 )
istrkg2d.d = ( dist ‘ 𝐺 )
istrkg2d.i 𝐼 = ( Itv ‘ 𝐺 )
Assertion istrkg2d ( 𝐺 ∈ TarskiG2D ↔ ( 𝐺 ∈ V ∧ ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 istrkg2d.p 𝑃 = ( Base ‘ 𝐺 )
2 istrkg2d.d = ( dist ‘ 𝐺 )
3 istrkg2d.i 𝐼 = ( Itv ‘ 𝐺 )
4 simp1 ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑝 = 𝑃 )
5 4 eqcomd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑃 = 𝑝 )
6 simp3 ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑖 = 𝐼 )
7 6 eqcomd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝐼 = 𝑖 )
8 7 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 𝐼 𝑦 ) = ( 𝑥 𝑖 𝑦 ) )
9 8 eleq2d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ) )
10 7 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝑖 𝑦 ) )
11 10 eleq2d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ) )
12 7 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 𝐼 𝑧 ) = ( 𝑥 𝑖 𝑧 ) )
13 12 eleq2d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) )
14 9 11 13 3orbi123d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
15 14 notbid ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
16 5 15 rexeqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∃ 𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ∃ 𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
17 5 16 rexeqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∃ 𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ∃ 𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
18 5 17 rexeqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) )
19 simp2 ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → 𝑑 = )
20 19 eqcomd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → = 𝑑 )
21 20 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 𝑢 ) = ( 𝑥 𝑑 𝑢 ) )
22 20 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑥 𝑣 ) = ( 𝑥 𝑑 𝑣 ) )
23 21 22 eqeq12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ↔ ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ) )
24 20 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑦 𝑢 ) = ( 𝑦 𝑑 𝑢 ) )
25 20 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑦 𝑣 ) = ( 𝑦 𝑑 𝑣 ) )
26 24 25 eqeq12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ↔ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ) )
27 20 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑧 𝑢 ) = ( 𝑧 𝑑 𝑢 ) )
28 20 oveqd ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( 𝑧 𝑣 ) = ( 𝑧 𝑑 𝑣 ) )
29 27 28 eqeq12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ↔ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) )
30 23 26 29 3anbi123d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ↔ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ) )
31 30 anbi1d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) ↔ ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) ) )
32 31 14 imbi12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
33 5 32 raleqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∀ 𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
34 5 33 raleqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∀ 𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
35 5 34 raleqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∀ 𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
36 5 35 raleqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∀ 𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
37 5 36 raleqbidv ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) )
38 18 37 anbi12d ( ( 𝑝 = 𝑃𝑑 = 𝑖 = 𝐼 ) → ( ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ↔ ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) ) )
39 1 2 3 38 sbcie3s ( 𝑓 = 𝐺 → ( [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) ↔ ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
40 df-trkg2d TarskiG2D = { 𝑓[ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∃ 𝑥𝑝𝑦𝑝𝑧𝑝 ¬ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ∧ ∀ 𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ( ( ( ( 𝑥 𝑑 𝑢 ) = ( 𝑥 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑦 𝑑 𝑣 ) ∧ ( 𝑧 𝑑 𝑢 ) = ( 𝑧 𝑑 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) ) ) }
41 39 40 elab4g ( 𝐺 ∈ TarskiG2D ↔ ( 𝐺 ∈ V ∧ ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )