Metamath Proof Explorer


Theorem axtglowdim2ALTV

Description: Alternate version of axtglowdim2 . (Contributed by Thierry Arnoux, 29-May-2019) (New usage is discouraged.)

Ref Expression
Hypotheses istrkg2d.p 𝑃 = ( Base ‘ 𝐺 )
istrkg2d.d = ( dist ‘ 𝐺 )
istrkg2d.i 𝐼 = ( Itv ‘ 𝐺 )
axtglowdim2ALTV.g ( 𝜑𝐺 ∈ TarskiG2D )
Assertion axtglowdim2ALTV ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 istrkg2d.p 𝑃 = ( Base ‘ 𝐺 )
2 istrkg2d.d = ( dist ‘ 𝐺 )
3 istrkg2d.i 𝐼 = ( Itv ‘ 𝐺 )
4 axtglowdim2ALTV.g ( 𝜑𝐺 ∈ TarskiG2D )
5 1 2 3 istrkg2d ( 𝐺 ∈ TarskiG2D ↔ ( 𝐺 ∈ V ∧ ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
6 4 5 sylib ( 𝜑 → ( 𝐺 ∈ V ∧ ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
7 6 simprd ( 𝜑 → ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) )
8 7 simpld ( 𝜑 → ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) )