Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg2d.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
istrkg2d.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
istrkg2d.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
axtglowdim2ALTV.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG2D ) |
5 |
1 2 3
|
istrkg2d |
⊢ ( 𝐺 ∈ TarskiG2D ↔ ( 𝐺 ∈ V ∧ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( ( ( 𝑥 − 𝑢 ) = ( 𝑥 − 𝑣 ) ∧ ( 𝑦 − 𝑢 ) = ( 𝑦 − 𝑣 ) ∧ ( 𝑧 − 𝑢 ) = ( 𝑧 − 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) ) |
6 |
4 5
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ V ∧ ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( ( ( 𝑥 − 𝑢 ) = ( 𝑥 − 𝑣 ) ∧ ( 𝑦 − 𝑢 ) = ( 𝑦 − 𝑣 ) ∧ ( 𝑧 − 𝑢 ) = ( 𝑧 − 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ∀ 𝑧 ∈ 𝑃 ∀ 𝑢 ∈ 𝑃 ∀ 𝑣 ∈ 𝑃 ( ( ( ( 𝑥 − 𝑢 ) = ( 𝑥 − 𝑣 ) ∧ ( 𝑦 − 𝑢 ) = ( 𝑦 − 𝑣 ) ∧ ( 𝑧 − 𝑢 ) = ( 𝑧 − 𝑣 ) ) ∧ 𝑢 ≠ 𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) |
8 |
7
|
simpld |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ∃ 𝑦 ∈ 𝑃 ∃ 𝑧 ∈ 𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) |