Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg2d.p |
|- P = ( Base ` G ) |
2 |
|
istrkg2d.d |
|- .- = ( dist ` G ) |
3 |
|
istrkg2d.i |
|- I = ( Itv ` G ) |
4 |
|
axtglowdim2ALTV.g |
|- ( ph -> G e. TarskiG2D ) |
5 |
1 2 3
|
istrkg2d |
|- ( G e. TarskiG2D <-> ( G e. _V /\ ( E. x e. P E. y e. P E. z e. P -. ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) /\ A. x e. P A. y e. P A. z e. P A. u e. P A. v e. P ( ( ( ( x .- u ) = ( x .- v ) /\ ( y .- u ) = ( y .- v ) /\ ( z .- u ) = ( z .- v ) ) /\ u =/= v ) -> ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) ) ) ) ) |
6 |
4 5
|
sylib |
|- ( ph -> ( G e. _V /\ ( E. x e. P E. y e. P E. z e. P -. ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) /\ A. x e. P A. y e. P A. z e. P A. u e. P A. v e. P ( ( ( ( x .- u ) = ( x .- v ) /\ ( y .- u ) = ( y .- v ) /\ ( z .- u ) = ( z .- v ) ) /\ u =/= v ) -> ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) ) ) ) ) |
7 |
6
|
simprd |
|- ( ph -> ( E. x e. P E. y e. P E. z e. P -. ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) /\ A. x e. P A. y e. P A. z e. P A. u e. P A. v e. P ( ( ( ( x .- u ) = ( x .- v ) /\ ( y .- u ) = ( y .- v ) /\ ( z .- u ) = ( z .- v ) ) /\ u =/= v ) -> ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) ) ) ) |
8 |
7
|
simpld |
|- ( ph -> E. x e. P E. y e. P E. z e. P -. ( z e. ( x I y ) \/ x e. ( z I y ) \/ y e. ( x I z ) ) ) |