Metamath Proof Explorer


Theorem axtgupdim2ALTV

Description: Alternate version of axtgupdim2 . (Contributed by Thierry Arnoux, 29-May-2019) (New usage is discouraged.)

Ref Expression
Hypotheses istrkg2d.p 𝑃 = ( Base ‘ 𝐺 )
istrkg2d.d = ( dist ‘ 𝐺 )
istrkg2d.i 𝐼 = ( Itv ‘ 𝐺 )
axtgupdim2ALTV.x ( 𝜑𝑋𝑃 )
axtgupdim2ALTV.y ( 𝜑𝑌𝑃 )
axtgupdim2ALTV.z ( 𝜑𝑍𝑃 )
axtgupdim2ALTV.u ( 𝜑𝑈𝑃 )
axtgupdim2ALTV.v ( 𝜑𝑉𝑃 )
axtgupdim2ALTV.0 ( 𝜑𝑈𝑉 )
axtgupdim2ALTV.1 ( 𝜑 → ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) )
axtgupdim2ALTV.2 ( 𝜑 → ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) )
axtgupdim2ALTV.3 ( 𝜑 → ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) )
axtgupdim2ALTV.g ( 𝜑𝐺 ∈ TarskiG2D )
Assertion axtgupdim2ALTV ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 istrkg2d.p 𝑃 = ( Base ‘ 𝐺 )
2 istrkg2d.d = ( dist ‘ 𝐺 )
3 istrkg2d.i 𝐼 = ( Itv ‘ 𝐺 )
4 axtgupdim2ALTV.x ( 𝜑𝑋𝑃 )
5 axtgupdim2ALTV.y ( 𝜑𝑌𝑃 )
6 axtgupdim2ALTV.z ( 𝜑𝑍𝑃 )
7 axtgupdim2ALTV.u ( 𝜑𝑈𝑃 )
8 axtgupdim2ALTV.v ( 𝜑𝑉𝑃 )
9 axtgupdim2ALTV.0 ( 𝜑𝑈𝑉 )
10 axtgupdim2ALTV.1 ( 𝜑 → ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) )
11 axtgupdim2ALTV.2 ( 𝜑 → ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) )
12 axtgupdim2ALTV.3 ( 𝜑 → ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) )
13 axtgupdim2ALTV.g ( 𝜑𝐺 ∈ TarskiG2D )
14 10 11 12 3jca ( 𝜑 → ( ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) )
15 1 2 3 istrkg2d ( 𝐺 ∈ TarskiG2D ↔ ( 𝐺 ∈ V ∧ ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
16 13 15 sylib ( 𝜑 → ( 𝐺 ∈ V ∧ ( ∃ 𝑥𝑃𝑦𝑃𝑧𝑃 ¬ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ∧ ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ) ) )
17 16 simprrd ( 𝜑 → ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) )
18 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑢 ) = ( 𝑋 𝑢 ) )
19 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑣 ) = ( 𝑋 𝑣 ) )
20 18 19 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ↔ ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ) )
21 20 3anbi1d ( 𝑥 = 𝑋 → ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ↔ ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ) )
22 21 anbi1d ( 𝑥 = 𝑋 → ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) ↔ ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) ) )
23 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐼 𝑦 ) = ( 𝑋 𝐼 𝑦 ) )
24 23 eleq2d ( 𝑥 = 𝑋 → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ) )
25 eleq1 ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ) )
26 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑧 ) )
27 26 eleq2d ( 𝑥 = 𝑋 → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) )
28 24 25 27 3orbi123d ( 𝑥 = 𝑋 → ( ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) )
29 22 28 imbi12d ( 𝑥 = 𝑋 → ( ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ) )
30 29 2ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) ↔ ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ) )
31 oveq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑢 ) = ( 𝑌 𝑢 ) )
32 oveq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑣 ) = ( 𝑌 𝑣 ) )
33 31 32 eqeq12d ( 𝑦 = 𝑌 → ( ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ↔ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ) )
34 33 3anbi2d ( 𝑦 = 𝑌 → ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ↔ ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ) )
35 34 anbi1d ( 𝑦 = 𝑌 → ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) ↔ ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) ) )
36 oveq2 ( 𝑦 = 𝑌 → ( 𝑋 𝐼 𝑦 ) = ( 𝑋 𝐼 𝑌 ) )
37 36 eleq2d ( 𝑦 = 𝑌 → ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ) )
38 oveq2 ( 𝑦 = 𝑌 → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝐼 𝑌 ) )
39 38 eleq2d ( 𝑦 = 𝑌 → ( 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ) )
40 eleq1 ( 𝑦 = 𝑌 → ( 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) )
41 37 39 40 3orbi123d ( 𝑦 = 𝑌 → ( ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) )
42 35 41 imbi12d ( 𝑦 = 𝑌 → ( ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ↔ ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ) )
43 42 2ralbidv ( 𝑦 = 𝑌 → ( ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑦 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ↔ ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ) )
44 oveq1 ( 𝑧 = 𝑍 → ( 𝑧 𝑢 ) = ( 𝑍 𝑢 ) )
45 oveq1 ( 𝑧 = 𝑍 → ( 𝑧 𝑣 ) = ( 𝑍 𝑣 ) )
46 44 45 eqeq12d ( 𝑧 = 𝑍 → ( ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ↔ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) )
47 46 3anbi3d ( 𝑧 = 𝑍 → ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ↔ ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ) )
48 47 anbi1d ( 𝑧 = 𝑍 → ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) ↔ ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) ) )
49 eleq1 ( 𝑧 = 𝑍 → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) )
50 oveq1 ( 𝑧 = 𝑍 → ( 𝑧 𝐼 𝑌 ) = ( 𝑍 𝐼 𝑌 ) )
51 50 eleq2d ( 𝑧 = 𝑍 → ( 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ↔ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) )
52 oveq2 ( 𝑧 = 𝑍 → ( 𝑋 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑍 ) )
53 52 eleq2d ( 𝑧 = 𝑍 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) )
54 49 51 53 3orbi123d ( 𝑧 = 𝑍 → ( ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
55 48 54 imbi12d ( 𝑧 = 𝑍 → ( ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ↔ ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
56 55 2ralbidv ( 𝑧 = 𝑍 → ( ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ↔ ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
57 30 43 56 rspc3v ( ( 𝑋𝑃𝑌𝑃𝑍𝑃 ) → ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) → ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
58 4 5 6 57 syl3anc ( 𝜑 → ( ∀ 𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ( ( ( ( 𝑥 𝑢 ) = ( 𝑥 𝑣 ) ∧ ( 𝑦 𝑢 ) = ( 𝑦 𝑣 ) ∧ ( 𝑧 𝑢 ) = ( 𝑧 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ) → ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
59 17 58 mpd ( 𝜑 → ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
60 oveq2 ( 𝑢 = 𝑈 → ( 𝑋 𝑢 ) = ( 𝑋 𝑈 ) )
61 60 eqeq1d ( 𝑢 = 𝑈 → ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ↔ ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ) )
62 oveq2 ( 𝑢 = 𝑈 → ( 𝑌 𝑢 ) = ( 𝑌 𝑈 ) )
63 62 eqeq1d ( 𝑢 = 𝑈 → ( ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ↔ ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ) )
64 oveq2 ( 𝑢 = 𝑈 → ( 𝑍 𝑢 ) = ( 𝑍 𝑈 ) )
65 64 eqeq1d ( 𝑢 = 𝑈 → ( ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ↔ ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ) )
66 61 63 65 3anbi123d ( 𝑢 = 𝑈 → ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ↔ ( ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ) ) )
67 neeq1 ( 𝑢 = 𝑈 → ( 𝑢𝑣𝑈𝑣 ) )
68 66 67 anbi12d ( 𝑢 = 𝑈 → ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) ↔ ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ) ∧ 𝑈𝑣 ) ) )
69 68 imbi1d ( 𝑢 = 𝑈 → ( ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ↔ ( ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ) ∧ 𝑈𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
70 oveq2 ( 𝑣 = 𝑉 → ( 𝑋 𝑣 ) = ( 𝑋 𝑉 ) )
71 70 eqeq2d ( 𝑣 = 𝑉 → ( ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ↔ ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ) )
72 oveq2 ( 𝑣 = 𝑉 → ( 𝑌 𝑣 ) = ( 𝑌 𝑉 ) )
73 72 eqeq2d ( 𝑣 = 𝑉 → ( ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ↔ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ) )
74 oveq2 ( 𝑣 = 𝑉 → ( 𝑍 𝑣 ) = ( 𝑍 𝑉 ) )
75 74 eqeq2d ( 𝑣 = 𝑉 → ( ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ↔ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) )
76 71 73 75 3anbi123d ( 𝑣 = 𝑉 → ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ) ↔ ( ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) ) )
77 neeq2 ( 𝑣 = 𝑉 → ( 𝑈𝑣𝑈𝑉 ) )
78 76 77 anbi12d ( 𝑣 = 𝑉 → ( ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ) ∧ 𝑈𝑣 ) ↔ ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) ∧ 𝑈𝑉 ) ) )
79 78 imbi1d ( 𝑣 = 𝑉 → ( ( ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑣 ) ) ∧ 𝑈𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ↔ ( ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) ∧ 𝑈𝑉 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
80 69 79 rspc2v ( ( 𝑈𝑃𝑉𝑃 ) → ( ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) → ( ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) ∧ 𝑈𝑉 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
81 7 8 80 syl2anc ( 𝜑 → ( ∀ 𝑢𝑃𝑣𝑃 ( ( ( ( 𝑋 𝑢 ) = ( 𝑋 𝑣 ) ∧ ( 𝑌 𝑢 ) = ( 𝑌 𝑣 ) ∧ ( 𝑍 𝑢 ) = ( 𝑍 𝑣 ) ) ∧ 𝑢𝑣 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) → ( ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) ∧ 𝑈𝑉 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) )
82 59 81 mpd ( 𝜑 → ( ( ( ( 𝑋 𝑈 ) = ( 𝑋 𝑉 ) ∧ ( 𝑌 𝑈 ) = ( 𝑌 𝑉 ) ∧ ( 𝑍 𝑈 ) = ( 𝑍 𝑉 ) ) ∧ 𝑈𝑉 ) → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) )
83 14 9 82 mp2and ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) )