| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istrkg2d.p |
|
| 2 |
|
istrkg2d.d |
|
| 3 |
|
istrkg2d.i |
|
| 4 |
|
axtgupdim2ALTV.x |
|
| 5 |
|
axtgupdim2ALTV.y |
|
| 6 |
|
axtgupdim2ALTV.z |
|
| 7 |
|
axtgupdim2ALTV.u |
|
| 8 |
|
axtgupdim2ALTV.v |
|
| 9 |
|
axtgupdim2ALTV.0 |
|
| 10 |
|
axtgupdim2ALTV.1 |
|
| 11 |
|
axtgupdim2ALTV.2 |
|
| 12 |
|
axtgupdim2ALTV.3 |
|
| 13 |
|
axtgupdim2ALTV.g |
|
| 14 |
10 11 12
|
3jca |
|
| 15 |
1 2 3
|
istrkg2d |
|
| 16 |
13 15
|
sylib |
|
| 17 |
16
|
simprrd |
|
| 18 |
|
oveq1 |
|
| 19 |
|
oveq1 |
|
| 20 |
18 19
|
eqeq12d |
|
| 21 |
20
|
3anbi1d |
|
| 22 |
21
|
anbi1d |
|
| 23 |
|
oveq1 |
|
| 24 |
23
|
eleq2d |
|
| 25 |
|
eleq1 |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
eleq2d |
|
| 28 |
24 25 27
|
3orbi123d |
|
| 29 |
22 28
|
imbi12d |
|
| 30 |
29
|
2ralbidv |
|
| 31 |
|
oveq1 |
|
| 32 |
|
oveq1 |
|
| 33 |
31 32
|
eqeq12d |
|
| 34 |
33
|
3anbi2d |
|
| 35 |
34
|
anbi1d |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
eleq2d |
|
| 38 |
|
oveq2 |
|
| 39 |
38
|
eleq2d |
|
| 40 |
|
eleq1 |
|
| 41 |
37 39 40
|
3orbi123d |
|
| 42 |
35 41
|
imbi12d |
|
| 43 |
42
|
2ralbidv |
|
| 44 |
|
oveq1 |
|
| 45 |
|
oveq1 |
|
| 46 |
44 45
|
eqeq12d |
|
| 47 |
46
|
3anbi3d |
|
| 48 |
47
|
anbi1d |
|
| 49 |
|
eleq1 |
|
| 50 |
|
oveq1 |
|
| 51 |
50
|
eleq2d |
|
| 52 |
|
oveq2 |
|
| 53 |
52
|
eleq2d |
|
| 54 |
49 51 53
|
3orbi123d |
|
| 55 |
48 54
|
imbi12d |
|
| 56 |
55
|
2ralbidv |
|
| 57 |
30 43 56
|
rspc3v |
|
| 58 |
4 5 6 57
|
syl3anc |
|
| 59 |
17 58
|
mpd |
|
| 60 |
|
oveq2 |
|
| 61 |
60
|
eqeq1d |
|
| 62 |
|
oveq2 |
|
| 63 |
62
|
eqeq1d |
|
| 64 |
|
oveq2 |
|
| 65 |
64
|
eqeq1d |
|
| 66 |
61 63 65
|
3anbi123d |
|
| 67 |
|
neeq1 |
|
| 68 |
66 67
|
anbi12d |
|
| 69 |
68
|
imbi1d |
|
| 70 |
|
oveq2 |
|
| 71 |
70
|
eqeq2d |
|
| 72 |
|
oveq2 |
|
| 73 |
72
|
eqeq2d |
|
| 74 |
|
oveq2 |
|
| 75 |
74
|
eqeq2d |
|
| 76 |
71 73 75
|
3anbi123d |
|
| 77 |
|
neeq2 |
|
| 78 |
76 77
|
anbi12d |
|
| 79 |
78
|
imbi1d |
|
| 80 |
69 79
|
rspc2v |
|
| 81 |
7 8 80
|
syl2anc |
|
| 82 |
59 81
|
mpd |
|
| 83 |
14 9 82
|
mp2and |
|