Step |
Hyp |
Ref |
Expression |
1 |
|
istrkg2d.p |
|
2 |
|
istrkg2d.d |
|
3 |
|
istrkg2d.i |
|
4 |
|
axtgupdim2ALTV.x |
|
5 |
|
axtgupdim2ALTV.y |
|
6 |
|
axtgupdim2ALTV.z |
|
7 |
|
axtgupdim2ALTV.u |
|
8 |
|
axtgupdim2ALTV.v |
|
9 |
|
axtgupdim2ALTV.0 |
|
10 |
|
axtgupdim2ALTV.1 |
|
11 |
|
axtgupdim2ALTV.2 |
|
12 |
|
axtgupdim2ALTV.3 |
|
13 |
|
axtgupdim2ALTV.g |
|
14 |
10 11 12
|
3jca |
|
15 |
1 2 3
|
istrkg2d |
|
16 |
13 15
|
sylib |
|
17 |
16
|
simprrd |
|
18 |
|
oveq1 |
|
19 |
|
oveq1 |
|
20 |
18 19
|
eqeq12d |
|
21 |
20
|
3anbi1d |
|
22 |
21
|
anbi1d |
|
23 |
|
oveq1 |
|
24 |
23
|
eleq2d |
|
25 |
|
eleq1 |
|
26 |
|
oveq1 |
|
27 |
26
|
eleq2d |
|
28 |
24 25 27
|
3orbi123d |
|
29 |
22 28
|
imbi12d |
|
30 |
29
|
2ralbidv |
|
31 |
|
oveq1 |
|
32 |
|
oveq1 |
|
33 |
31 32
|
eqeq12d |
|
34 |
33
|
3anbi2d |
|
35 |
34
|
anbi1d |
|
36 |
|
oveq2 |
|
37 |
36
|
eleq2d |
|
38 |
|
oveq2 |
|
39 |
38
|
eleq2d |
|
40 |
|
eleq1 |
|
41 |
37 39 40
|
3orbi123d |
|
42 |
35 41
|
imbi12d |
|
43 |
42
|
2ralbidv |
|
44 |
|
oveq1 |
|
45 |
|
oveq1 |
|
46 |
44 45
|
eqeq12d |
|
47 |
46
|
3anbi3d |
|
48 |
47
|
anbi1d |
|
49 |
|
eleq1 |
|
50 |
|
oveq1 |
|
51 |
50
|
eleq2d |
|
52 |
|
oveq2 |
|
53 |
52
|
eleq2d |
|
54 |
49 51 53
|
3orbi123d |
|
55 |
48 54
|
imbi12d |
|
56 |
55
|
2ralbidv |
|
57 |
30 43 56
|
rspc3v |
|
58 |
4 5 6 57
|
syl3anc |
|
59 |
17 58
|
mpd |
|
60 |
|
oveq2 |
|
61 |
60
|
eqeq1d |
|
62 |
|
oveq2 |
|
63 |
62
|
eqeq1d |
|
64 |
|
oveq2 |
|
65 |
64
|
eqeq1d |
|
66 |
61 63 65
|
3anbi123d |
|
67 |
|
neeq1 |
|
68 |
66 67
|
anbi12d |
|
69 |
68
|
imbi1d |
|
70 |
|
oveq2 |
|
71 |
70
|
eqeq2d |
|
72 |
|
oveq2 |
|
73 |
72
|
eqeq2d |
|
74 |
|
oveq2 |
|
75 |
74
|
eqeq2d |
|
76 |
71 73 75
|
3anbi123d |
|
77 |
|
neeq2 |
|
78 |
76 77
|
anbi12d |
|
79 |
78
|
imbi1d |
|
80 |
69 79
|
rspc2v |
|
81 |
7 8 80
|
syl2anc |
|
82 |
59 81
|
mpd |
|
83 |
14 9 82
|
mp2and |
|