| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcie3s.a |
⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) |
| 2 |
|
sbcie3s.b |
⊢ 𝐵 = ( 𝐹 ‘ 𝑊 ) |
| 3 |
|
sbcie3s.c |
⊢ 𝐶 = ( 𝐺 ‘ 𝑊 ) |
| 4 |
|
sbcie3s.1 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
| 5 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) ∈ V ) |
| 6 |
|
fvexd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ V ) |
| 7 |
|
fvexd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ V ) |
| 8 |
|
simpllr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑤 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 11 |
8 10
|
eqtrd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑊 ) ) |
| 12 |
11 1
|
eqtr4di |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = 𝐴 ) |
| 13 |
|
simplr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = ( 𝐹 ‘ 𝑤 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) |
| 15 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) |
| 16 |
13 15
|
eqtrd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = ( 𝐹 ‘ 𝑊 ) ) |
| 17 |
16 2
|
eqtr4di |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = 𝐵 ) |
| 18 |
|
simpr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = ( 𝐺 ‘ 𝑤 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑊 ) ) |
| 21 |
18 20
|
eqtrd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = ( 𝐺 ‘ 𝑊 ) ) |
| 22 |
21 3
|
eqtr4di |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = 𝐶 ) |
| 23 |
12 17 22 4
|
syl3anc |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
| 24 |
23
|
bicomd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
| 25 |
7 24
|
sbcied |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |
| 26 |
6 25
|
sbcied |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |
| 27 |
5 26
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |