Metamath Proof Explorer


Definition df-trkgb

Description: Define the class of geometries fulfilling the 3 betweenness axioms in Tarski's Axiomatization of Geometry: identity, Axiom A6 of Schwabhauser p. 11, axiom of Pasch, Axiom A7 of Schwabhauser p. 12, and continuity, Axiom A11 of Schwabhauser p. 13. (Contributed by Thierry Arnoux, 24-Aug-2017)

Ref Expression
Assertion df-trkgb 𝒢TarskiB=f|[˙Basef/p]˙[˙Itvf/i]˙xpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cstrkgb class𝒢TarskiB
1 vf setvarf
2 cbs classBase
3 1 cv setvarf
4 3 2 cfv classBasef
5 vp setvarp
6 citv classItv
7 3 6 cfv classItvf
8 vi setvari
9 vx setvarx
10 5 cv setvarp
11 vy setvary
12 11 cv setvary
13 9 cv setvarx
14 8 cv setvari
15 13 13 14 co classxix
16 12 15 wcel wffyxix
17 13 12 wceq wffx=y
18 16 17 wi wffyxixx=y
19 18 11 10 wral wffypyxixx=y
20 19 9 10 wral wffxpypyxixx=y
21 vz setvarz
22 vu setvaru
23 vv setvarv
24 22 cv setvaru
25 21 cv setvarz
26 13 25 14 co classxiz
27 24 26 wcel wffuxiz
28 23 cv setvarv
29 12 25 14 co classyiz
30 28 29 wcel wffvyiz
31 27 30 wa wffuxizvyiz
32 va setvara
33 32 cv setvara
34 24 12 14 co classuiy
35 33 34 wcel wffauiy
36 28 13 14 co classvix
37 33 36 wcel wffavix
38 35 37 wa wffauiyavix
39 38 32 10 wrex wffapauiyavix
40 31 39 wi wffuxizvyizapauiyavix
41 40 23 10 wral wffvpuxizvyizapauiyavix
42 41 22 10 wral wffupvpuxizvyizapauiyavix
43 42 21 10 wral wffzpupvpuxizvyizapauiyavix
44 43 11 10 wral wffypzpupvpuxizvyizapauiyavix
45 44 9 10 wral wffxpypzpupvpuxizvyizapauiyavix
46 vs setvars
47 10 cpw class𝒫p
48 vt setvart
49 46 cv setvars
50 48 cv setvart
51 33 12 14 co classaiy
52 13 51 wcel wffxaiy
53 52 11 50 wral wffytxaiy
54 53 9 49 wral wffxsytxaiy
55 54 32 10 wrex wffapxsytxaiy
56 vb setvarb
57 56 cv setvarb
58 13 12 14 co classxiy
59 57 58 wcel wffbxiy
60 59 11 50 wral wffytbxiy
61 60 9 49 wral wffxsytbxiy
62 61 56 10 wrex wffbpxsytbxiy
63 55 62 wi wffapxsytxaiybpxsytbxiy
64 63 48 47 wral wfft𝒫papxsytxaiybpxsytbxiy
65 64 46 47 wral wffs𝒫pt𝒫papxsytxaiybpxsytbxiy
66 20 45 65 w3a wffxpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiy
67 66 8 7 wsbc wff[˙Itvf/i]˙xpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiy
68 67 5 4 wsbc wff[˙Basef/p]˙[˙Itvf/i]˙xpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiy
69 68 1 cab classf|[˙Basef/p]˙[˙Itvf/i]˙xpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiy
70 0 69 wceq wff𝒢TarskiB=f|[˙Basef/p]˙[˙Itvf/i]˙xpypyxixx=yxpypzpupvpuxizvyizapauiyavixs𝒫pt𝒫papxsytxaiybpxsytbxiy