Description: Define the class of geometries fulfilling the 3 betweenness axioms in Tarski's Axiomatization of Geometry: identity, Axiom A6 of Schwabhauser p. 11, axiom of Pasch, Axiom A7 of Schwabhauser p. 12, and continuity, Axiom A11 of Schwabhauser p. 13. (Contributed by Thierry Arnoux, 24-Aug-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-trkgb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cstrkgb | |
|
1 | vf | |
|
2 | cbs | |
|
3 | 1 | cv | |
4 | 3 2 | cfv | |
5 | vp | |
|
6 | citv | |
|
7 | 3 6 | cfv | |
8 | vi | |
|
9 | vx | |
|
10 | 5 | cv | |
11 | vy | |
|
12 | 11 | cv | |
13 | 9 | cv | |
14 | 8 | cv | |
15 | 13 13 14 | co | |
16 | 12 15 | wcel | |
17 | 13 12 | wceq | |
18 | 16 17 | wi | |
19 | 18 11 10 | wral | |
20 | 19 9 10 | wral | |
21 | vz | |
|
22 | vu | |
|
23 | vv | |
|
24 | 22 | cv | |
25 | 21 | cv | |
26 | 13 25 14 | co | |
27 | 24 26 | wcel | |
28 | 23 | cv | |
29 | 12 25 14 | co | |
30 | 28 29 | wcel | |
31 | 27 30 | wa | |
32 | va | |
|
33 | 32 | cv | |
34 | 24 12 14 | co | |
35 | 33 34 | wcel | |
36 | 28 13 14 | co | |
37 | 33 36 | wcel | |
38 | 35 37 | wa | |
39 | 38 32 10 | wrex | |
40 | 31 39 | wi | |
41 | 40 23 10 | wral | |
42 | 41 22 10 | wral | |
43 | 42 21 10 | wral | |
44 | 43 11 10 | wral | |
45 | 44 9 10 | wral | |
46 | vs | |
|
47 | 10 | cpw | |
48 | vt | |
|
49 | 46 | cv | |
50 | 48 | cv | |
51 | 33 12 14 | co | |
52 | 13 51 | wcel | |
53 | 52 11 50 | wral | |
54 | 53 9 49 | wral | |
55 | 54 32 10 | wrex | |
56 | vb | |
|
57 | 56 | cv | |
58 | 13 12 14 | co | |
59 | 57 58 | wcel | |
60 | 59 11 50 | wral | |
61 | 60 9 49 | wral | |
62 | 61 56 10 | wrex | |
63 | 55 62 | wi | |
64 | 63 48 47 | wral | |
65 | 64 46 47 | wral | |
66 | 20 45 65 | w3a | |
67 | 66 8 7 | wsbc | |
68 | 67 5 4 | wsbc | |
69 | 68 1 | cab | |
70 | 0 69 | wceq | |