| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cstrkgb | ⊢ TarskiGB | 
						
							| 1 |  | vf | ⊢ 𝑓 | 
						
							| 2 |  | cbs | ⊢ Base | 
						
							| 3 | 1 | cv | ⊢ 𝑓 | 
						
							| 4 | 3 2 | cfv | ⊢ ( Base ‘ 𝑓 ) | 
						
							| 5 |  | vp | ⊢ 𝑝 | 
						
							| 6 |  | citv | ⊢ Itv | 
						
							| 7 | 3 6 | cfv | ⊢ ( Itv ‘ 𝑓 ) | 
						
							| 8 |  | vi | ⊢ 𝑖 | 
						
							| 9 |  | vx | ⊢ 𝑥 | 
						
							| 10 | 5 | cv | ⊢ 𝑝 | 
						
							| 11 |  | vy | ⊢ 𝑦 | 
						
							| 12 | 11 | cv | ⊢ 𝑦 | 
						
							| 13 | 9 | cv | ⊢ 𝑥 | 
						
							| 14 | 8 | cv | ⊢ 𝑖 | 
						
							| 15 | 13 13 14 | co | ⊢ ( 𝑥 𝑖 𝑥 ) | 
						
							| 16 | 12 15 | wcel | ⊢ 𝑦  ∈  ( 𝑥 𝑖 𝑥 ) | 
						
							| 17 | 13 12 | wceq | ⊢ 𝑥  =  𝑦 | 
						
							| 18 | 16 17 | wi | ⊢ ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 ) | 
						
							| 19 | 18 11 10 | wral | ⊢ ∀ 𝑦  ∈  𝑝 ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 ) | 
						
							| 20 | 19 9 10 | wral | ⊢ ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 ) | 
						
							| 21 |  | vz | ⊢ 𝑧 | 
						
							| 22 |  | vu | ⊢ 𝑢 | 
						
							| 23 |  | vv | ⊢ 𝑣 | 
						
							| 24 | 22 | cv | ⊢ 𝑢 | 
						
							| 25 | 21 | cv | ⊢ 𝑧 | 
						
							| 26 | 13 25 14 | co | ⊢ ( 𝑥 𝑖 𝑧 ) | 
						
							| 27 | 24 26 | wcel | ⊢ 𝑢  ∈  ( 𝑥 𝑖 𝑧 ) | 
						
							| 28 | 23 | cv | ⊢ 𝑣 | 
						
							| 29 | 12 25 14 | co | ⊢ ( 𝑦 𝑖 𝑧 ) | 
						
							| 30 | 28 29 | wcel | ⊢ 𝑣  ∈  ( 𝑦 𝑖 𝑧 ) | 
						
							| 31 | 27 30 | wa | ⊢ ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) ) | 
						
							| 32 |  | va | ⊢ 𝑎 | 
						
							| 33 | 32 | cv | ⊢ 𝑎 | 
						
							| 34 | 24 12 14 | co | ⊢ ( 𝑢 𝑖 𝑦 ) | 
						
							| 35 | 33 34 | wcel | ⊢ 𝑎  ∈  ( 𝑢 𝑖 𝑦 ) | 
						
							| 36 | 28 13 14 | co | ⊢ ( 𝑣 𝑖 𝑥 ) | 
						
							| 37 | 33 36 | wcel | ⊢ 𝑎  ∈  ( 𝑣 𝑖 𝑥 ) | 
						
							| 38 | 35 37 | wa | ⊢ ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) | 
						
							| 39 | 38 32 10 | wrex | ⊢ ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) | 
						
							| 40 | 31 39 | wi | ⊢ ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) ) | 
						
							| 41 | 40 23 10 | wral | ⊢ ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) ) | 
						
							| 42 | 41 22 10 | wral | ⊢ ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) ) | 
						
							| 43 | 42 21 10 | wral | ⊢ ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) ) | 
						
							| 44 | 43 11 10 | wral | ⊢ ∀ 𝑦  ∈  𝑝 ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) ) | 
						
							| 45 | 44 9 10 | wral | ⊢ ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) ) | 
						
							| 46 |  | vs | ⊢ 𝑠 | 
						
							| 47 | 10 | cpw | ⊢ 𝒫  𝑝 | 
						
							| 48 |  | vt | ⊢ 𝑡 | 
						
							| 49 | 46 | cv | ⊢ 𝑠 | 
						
							| 50 | 48 | cv | ⊢ 𝑡 | 
						
							| 51 | 33 12 14 | co | ⊢ ( 𝑎 𝑖 𝑦 ) | 
						
							| 52 | 13 51 | wcel | ⊢ 𝑥  ∈  ( 𝑎 𝑖 𝑦 ) | 
						
							| 53 | 52 11 50 | wral | ⊢ ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 ) | 
						
							| 54 | 53 9 49 | wral | ⊢ ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 ) | 
						
							| 55 | 54 32 10 | wrex | ⊢ ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 ) | 
						
							| 56 |  | vb | ⊢ 𝑏 | 
						
							| 57 | 56 | cv | ⊢ 𝑏 | 
						
							| 58 | 13 12 14 | co | ⊢ ( 𝑥 𝑖 𝑦 ) | 
						
							| 59 | 57 58 | wcel | ⊢ 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) | 
						
							| 60 | 59 11 50 | wral | ⊢ ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) | 
						
							| 61 | 60 9 49 | wral | ⊢ ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) | 
						
							| 62 | 61 56 10 | wrex | ⊢ ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) | 
						
							| 63 | 55 62 | wi | ⊢ ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) | 
						
							| 64 | 63 48 47 | wral | ⊢ ∀ 𝑡  ∈  𝒫  𝑝 ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) | 
						
							| 65 | 64 46 47 | wral | ⊢ ∀ 𝑠  ∈  𝒫  𝑝 ∀ 𝑡  ∈  𝒫  𝑝 ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) | 
						
							| 66 | 20 45 65 | w3a | ⊢ ( ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑝 ∀ 𝑡  ∈  𝒫  𝑝 ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) ) | 
						
							| 67 | 66 8 7 | wsbc | ⊢ [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑝 ∀ 𝑡  ∈  𝒫  𝑝 ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) ) | 
						
							| 68 | 67 5 4 | wsbc | ⊢ [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑝 ∀ 𝑡  ∈  𝒫  𝑝 ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) ) | 
						
							| 69 | 68 1 | cab | ⊢ { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑝 ∀ 𝑡  ∈  𝒫  𝑝 ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) ) } | 
						
							| 70 | 0 69 | wceq | ⊢ TarskiGB  =  { 𝑓  ∣  [ ( Base ‘ 𝑓 )  /  𝑝 ] [ ( Itv ‘ 𝑓 )  /  𝑖 ] ( ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ( 𝑦  ∈  ( 𝑥 𝑖 𝑥 )  →  𝑥  =  𝑦 )  ∧  ∀ 𝑥  ∈  𝑝 ∀ 𝑦  ∈  𝑝 ∀ 𝑧  ∈  𝑝 ∀ 𝑢  ∈  𝑝 ∀ 𝑣  ∈  𝑝 ( ( 𝑢  ∈  ( 𝑥 𝑖 𝑧 )  ∧  𝑣  ∈  ( 𝑦 𝑖 𝑧 ) )  →  ∃ 𝑎  ∈  𝑝 ( 𝑎  ∈  ( 𝑢 𝑖 𝑦 )  ∧  𝑎  ∈  ( 𝑣 𝑖 𝑥 ) ) )  ∧  ∀ 𝑠  ∈  𝒫  𝑝 ∀ 𝑡  ∈  𝒫  𝑝 ( ∃ 𝑎  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑥  ∈  ( 𝑎 𝑖 𝑦 )  →  ∃ 𝑏  ∈  𝑝 ∀ 𝑥  ∈  𝑠 ∀ 𝑦  ∈  𝑡 𝑏  ∈  ( 𝑥 𝑖 𝑦 ) ) ) } |