| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cstrkgcb |
⊢ TarskiGCB |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cbs |
⊢ Base |
| 3 |
1
|
cv |
⊢ 𝑓 |
| 4 |
3 2
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 5 |
|
vp |
⊢ 𝑝 |
| 6 |
|
cds |
⊢ dist |
| 7 |
3 6
|
cfv |
⊢ ( dist ‘ 𝑓 ) |
| 8 |
|
vd |
⊢ 𝑑 |
| 9 |
|
citv |
⊢ Itv |
| 10 |
3 9
|
cfv |
⊢ ( Itv ‘ 𝑓 ) |
| 11 |
|
vi |
⊢ 𝑖 |
| 12 |
|
vx |
⊢ 𝑥 |
| 13 |
5
|
cv |
⊢ 𝑝 |
| 14 |
|
vy |
⊢ 𝑦 |
| 15 |
|
vz |
⊢ 𝑧 |
| 16 |
|
vu |
⊢ 𝑢 |
| 17 |
|
va |
⊢ 𝑎 |
| 18 |
|
vb |
⊢ 𝑏 |
| 19 |
|
vc |
⊢ 𝑐 |
| 20 |
|
vv |
⊢ 𝑣 |
| 21 |
12
|
cv |
⊢ 𝑥 |
| 22 |
14
|
cv |
⊢ 𝑦 |
| 23 |
21 22
|
wne |
⊢ 𝑥 ≠ 𝑦 |
| 24 |
11
|
cv |
⊢ 𝑖 |
| 25 |
15
|
cv |
⊢ 𝑧 |
| 26 |
21 25 24
|
co |
⊢ ( 𝑥 𝑖 𝑧 ) |
| 27 |
22 26
|
wcel |
⊢ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) |
| 28 |
18
|
cv |
⊢ 𝑏 |
| 29 |
17
|
cv |
⊢ 𝑎 |
| 30 |
19
|
cv |
⊢ 𝑐 |
| 31 |
29 30 24
|
co |
⊢ ( 𝑎 𝑖 𝑐 ) |
| 32 |
28 31
|
wcel |
⊢ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) |
| 33 |
23 27 32
|
w3a |
⊢ ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) |
| 34 |
8
|
cv |
⊢ 𝑑 |
| 35 |
21 22 34
|
co |
⊢ ( 𝑥 𝑑 𝑦 ) |
| 36 |
29 28 34
|
co |
⊢ ( 𝑎 𝑑 𝑏 ) |
| 37 |
35 36
|
wceq |
⊢ ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) |
| 38 |
22 25 34
|
co |
⊢ ( 𝑦 𝑑 𝑧 ) |
| 39 |
28 30 34
|
co |
⊢ ( 𝑏 𝑑 𝑐 ) |
| 40 |
38 39
|
wceq |
⊢ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) |
| 41 |
37 40
|
wa |
⊢ ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) |
| 42 |
16
|
cv |
⊢ 𝑢 |
| 43 |
21 42 34
|
co |
⊢ ( 𝑥 𝑑 𝑢 ) |
| 44 |
20
|
cv |
⊢ 𝑣 |
| 45 |
29 44 34
|
co |
⊢ ( 𝑎 𝑑 𝑣 ) |
| 46 |
43 45
|
wceq |
⊢ ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) |
| 47 |
22 42 34
|
co |
⊢ ( 𝑦 𝑑 𝑢 ) |
| 48 |
28 44 34
|
co |
⊢ ( 𝑏 𝑑 𝑣 ) |
| 49 |
47 48
|
wceq |
⊢ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) |
| 50 |
46 49
|
wa |
⊢ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) |
| 51 |
41 50
|
wa |
⊢ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) |
| 52 |
33 51
|
wa |
⊢ ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) |
| 53 |
25 42 34
|
co |
⊢ ( 𝑧 𝑑 𝑢 ) |
| 54 |
30 44 34
|
co |
⊢ ( 𝑐 𝑑 𝑣 ) |
| 55 |
53 54
|
wceq |
⊢ ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) |
| 56 |
52 55
|
wi |
⊢ ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 57 |
56 20 13
|
wral |
⊢ ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 58 |
57 19 13
|
wral |
⊢ ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 59 |
58 18 13
|
wral |
⊢ ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 60 |
59 17 13
|
wral |
⊢ ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 61 |
60 16 13
|
wral |
⊢ ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 62 |
61 15 13
|
wral |
⊢ ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 63 |
62 14 13
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 64 |
63 12 13
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) |
| 65 |
38 36
|
wceq |
⊢ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) |
| 66 |
27 65
|
wa |
⊢ ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
| 67 |
66 15 13
|
wrex |
⊢ ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
| 68 |
67 18 13
|
wral |
⊢ ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
| 69 |
68 17 13
|
wral |
⊢ ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
| 70 |
69 14 13
|
wral |
⊢ ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
| 71 |
70 12 13
|
wral |
⊢ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) |
| 72 |
64 71
|
wa |
⊢ ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
| 73 |
72 11 10
|
wsbc |
⊢ [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
| 74 |
73 8 7
|
wsbc |
⊢ [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
| 75 |
74 5 4
|
wsbc |
⊢ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) |
| 76 |
75 1
|
cab |
⊢ { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) } |
| 77 |
0 76
|
wceq |
⊢ TarskiGCB = { 𝑓 ∣ [ ( Base ‘ 𝑓 ) / 𝑝 ] [ ( dist ‘ 𝑓 ) / 𝑑 ] [ ( Itv ‘ 𝑓 ) / 𝑖 ] ( ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑧 ∈ 𝑝 ∀ 𝑢 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∀ 𝑐 ∈ 𝑝 ∀ 𝑣 ∈ 𝑝 ( ( ( 𝑥 ≠ 𝑦 ∧ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ 𝑏 ∈ ( 𝑎 𝑖 𝑐 ) ) ∧ ( ( ( 𝑥 𝑑 𝑦 ) = ( 𝑎 𝑑 𝑏 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑏 𝑑 𝑐 ) ) ∧ ( ( 𝑥 𝑑 𝑢 ) = ( 𝑎 𝑑 𝑣 ) ∧ ( 𝑦 𝑑 𝑢 ) = ( 𝑏 𝑑 𝑣 ) ) ) ) → ( 𝑧 𝑑 𝑢 ) = ( 𝑐 𝑑 𝑣 ) ) ∧ ∀ 𝑥 ∈ 𝑝 ∀ 𝑦 ∈ 𝑝 ∀ 𝑎 ∈ 𝑝 ∀ 𝑏 ∈ 𝑝 ∃ 𝑧 ∈ 𝑝 ( 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ∧ ( 𝑦 𝑑 𝑧 ) = ( 𝑎 𝑑 𝑏 ) ) ) } |