Description: Definition of the class of universal properties.
Given categories D and E , if F : D --> E is a functor and W an object of E , a universal pair from W to F is a pair <. X , M >. consisting of an object X of D and a morphism M : W --> F X of E , such that to every pair <. y , g >. with y an object of D and g : W --> F y a morphism of E , there is a unique morphism k : X --> y of D with F k .o. M = g . Such property is commonly referred to as a universal property. In our definition, it is denoted as X ( F ( D UP E ) W ) M .
Note that the universal pair is termed differently as "universal arrow" in p. 55 of Mac Lane, Saunders,Categories for the Working Mathematician, 2nd Edition, Springer Science+Business Media, New York, (1998) [QA169.M33 1998]; available at https://math.mit.edu/~hrm/palestine/maclane-categories.pdf (retrieved 6 Oct 2025). Interestingly, the "universal arrow" is referring to the morphism M instead of the pair near the end of the same piece of the text, causing name collision. The name "universal arrow" is also adopted in papers such as https://arxiv.org/pdf/2212.08981 . Alternatively, the universal pair is called the "universal morphism" in Wikipedia ( https://en.wikipedia.org/wiki/Universal_property ) as well as published works, e.g., https://arxiv.org/pdf/2412.12179 . But the pair <. X , M >. should be named differently as the morphism M , and thus we call X theuniversal object, M theuniversal morphism, and <. X , M >. theuniversal pair.
Given its existence, such universal pair is essentially unique ( upeu3 ), and can be generated from an existing universal pair by isomorphisms ( upeu4 ). See also oppcup for the dual concept.
(Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-up | Could not format assertion : No typesetting found for |- UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) with typecode |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cup | Could not format UP : No typesetting found for class UP with typecode class | |
| 1 | vd | ||
| 2 | cvv | ||
| 3 | ve | ||
| 4 | cbs | ||
| 5 | 1 | cv | |
| 6 | 5 4 | cfv | |
| 7 | vb | ||
| 8 | 3 | cv | |
| 9 | 8 4 | cfv | |
| 10 | vc | ||
| 11 | chom | ||
| 12 | 5 11 | cfv | |
| 13 | vh | ||
| 14 | 8 11 | cfv | |
| 15 | vj | ||
| 16 | cco | ||
| 17 | 8 16 | cfv | |
| 18 | vo | ||
| 19 | vf | ||
| 20 | cfunc | ||
| 21 | 5 8 20 | co | |
| 22 | vw | ||
| 23 | 10 | cv | |
| 24 | vx | ||
| 25 | vm | ||
| 26 | 24 | cv | |
| 27 | 7 | cv | |
| 28 | 26 27 | wcel | |
| 29 | 25 | cv | |
| 30 | 22 | cv | |
| 31 | 15 | cv | |
| 32 | c1st | ||
| 33 | 19 | cv | |
| 34 | 33 32 | cfv | |
| 35 | 26 34 | cfv | |
| 36 | 30 35 31 | co | |
| 37 | 29 36 | wcel | |
| 38 | 28 37 | wa | |
| 39 | vy | ||
| 40 | vg | ||
| 41 | 39 | cv | |
| 42 | 41 34 | cfv | |
| 43 | 30 42 31 | co | |
| 44 | vk | ||
| 45 | 13 | cv | |
| 46 | 26 41 45 | co | |
| 47 | 40 | cv | |
| 48 | c2nd | ||
| 49 | 33 48 | cfv | |
| 50 | 26 41 49 | co | |
| 51 | 44 | cv | |
| 52 | 51 50 | cfv | |
| 53 | 30 35 | cop | |
| 54 | 18 | cv | |
| 55 | 53 42 54 | co | |
| 56 | 52 29 55 | co | |
| 57 | 47 56 | wceq | |
| 58 | 57 44 46 | wreu | |
| 59 | 58 40 43 | wral | |
| 60 | 59 39 27 | wral | |
| 61 | 38 60 | wa | |
| 62 | 61 24 25 | copab | |
| 63 | 19 22 21 23 62 | cmpo | |
| 64 | 18 17 63 | csb | |
| 65 | 15 14 64 | csb | |
| 66 | 13 12 65 | csb | |
| 67 | 10 9 66 | csb | |
| 68 | 7 6 67 | csb | |
| 69 | 1 3 2 2 68 | cmpo | |
| 70 | 0 69 | wceq | Could not format UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) : No typesetting found for wff UP = ( d e. _V , e e. _V |-> [_ ( Base ` d ) / b ]_ [_ ( Base ` e ) / c ]_ [_ ( Hom ` d ) / h ]_ [_ ( Hom ` e ) / j ]_ [_ ( comp ` e ) / o ]_ ( f e. ( d Func e ) , w e. c |-> { <. x , m >. | ( ( x e. b /\ m e. ( w j ( ( 1st ` f ) ` x ) ) ) /\ A. y e. b A. g e. ( w j ( ( 1st ` f ) ` y ) ) E! k e. ( x h y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. o ( ( 1st ` f ) ` y ) ) m ) ) } ) ) with typecode wff |