Metamath Proof Explorer


Definition df-upwlks

Description: Define the set of all walks (in a pseudograph), called "simple walks" in the following.

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory) , 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)."

According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0Bollobas p. 4.

Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n).

Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Assertion df-upwlks UPWalks=gVfp|fWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cupwlks classUPWalks
1 vg setvarg
2 cvv classV
3 vf setvarf
4 vp setvarp
5 3 cv setvarf
6 ciedg classiEdg
7 1 cv setvarg
8 7 6 cfv classiEdgg
9 8 cdm classdomiEdgg
10 9 cword classWorddomiEdgg
11 5 10 wcel wfffWorddomiEdgg
12 4 cv setvarp
13 cc0 class0
14 cfz class
15 chash class.
16 5 15 cfv classf
17 13 16 14 co class0f
18 cvtx classVtx
19 7 18 cfv classVtxg
20 17 19 12 wf wffp:0fVtxg
21 vk setvark
22 cfzo class..^
23 13 16 22 co class0..^f
24 21 cv setvark
25 24 5 cfv classfk
26 25 8 cfv classiEdggfk
27 24 12 cfv classpk
28 caddc class+
29 c1 class1
30 24 29 28 co classk+1
31 30 12 cfv classpk+1
32 27 31 cpr classpkpk+1
33 26 32 wceq wffiEdggfk=pkpk+1
34 33 21 23 wral wffk0..^fiEdggfk=pkpk+1
35 11 20 34 w3a wfffWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1
36 35 3 4 copab classfp|fWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1
37 1 2 36 cmpt classgVfp|fWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1
38 0 37 wceq wffUPWalks=gVfp|fWorddomiEdggp:0fVtxgk0..^fiEdggfk=pkpk+1