Metamath Proof Explorer


Definition df-wspthsn

Description: Define the collection of simple paths of a fixed length as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion df-wspthsn WSPathsN=n0,gVwnWWalksNg|ffSPathsgw

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwwspthsn classWSPathsN
1 vn setvarn
2 cn0 class0
3 vg setvarg
4 cvv classV
5 vw setvarw
6 1 cv setvarn
7 cwwlksn classWWalksN
8 3 cv setvarg
9 6 8 7 co classnWWalksNg
10 vf setvarf
11 10 cv setvarf
12 cspths classSPaths
13 8 12 cfv classSPathsg
14 5 cv setvarw
15 11 14 13 wbr wfffSPathsgw
16 15 10 wex wffffSPathsgw
17 16 5 9 crab classwnWWalksNg|ffSPathsgw
18 1 3 2 4 17 cmpo classn0,gVwnWWalksNg|ffSPathsgw
19 0 18 wceq wffWSPathsN=n0,gVwnWWalksNg|ffSPathsgw