Metamath Proof Explorer


Definition df-wspthsnon

Description: Define the collection of simple paths of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion df-wspthsnon WSPathsNOn=n0,gVaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwwspthsnon classWSPathsNOn
1 vn setvarn
2 cn0 class0
3 vg setvarg
4 cvv classV
5 va setvara
6 cvtx classVtx
7 3 cv setvarg
8 7 6 cfv classVtxg
9 vb setvarb
10 vw setvarw
11 5 cv setvara
12 1 cv setvarn
13 cwwlksnon classWWalksNOn
14 12 7 13 co classnWWalksNOng
15 9 cv setvarb
16 11 15 14 co classanWWalksNOngb
17 vf setvarf
18 17 cv setvarf
19 cspthson classSPathsOn
20 7 19 cfv classSPathsOng
21 11 15 20 co classaSPathsOngb
22 10 cv setvarw
23 18 22 21 wbr wfffaSPathsOngbw
24 23 17 wex wffffaSPathsOngbw
25 24 10 16 crab classwanWWalksNOngb|ffaSPathsOngbw
26 5 9 8 8 25 cmpo classaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw
27 1 3 2 4 26 cmpo classn0,gVaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw
28 0 27 wceq wffWSPathsNOn=n0,gVaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw