| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cwwspthsnon |  |-  WSPathsNOn | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cn0 |  |-  NN0 | 
						
							| 3 |  | vg |  |-  g | 
						
							| 4 |  | cvv |  |-  _V | 
						
							| 5 |  | va |  |-  a | 
						
							| 6 |  | cvtx |  |-  Vtx | 
						
							| 7 | 3 | cv |  |-  g | 
						
							| 8 | 7 6 | cfv |  |-  ( Vtx ` g ) | 
						
							| 9 |  | vb |  |-  b | 
						
							| 10 |  | vw |  |-  w | 
						
							| 11 | 5 | cv |  |-  a | 
						
							| 12 | 1 | cv |  |-  n | 
						
							| 13 |  | cwwlksnon |  |-  WWalksNOn | 
						
							| 14 | 12 7 13 | co |  |-  ( n WWalksNOn g ) | 
						
							| 15 | 9 | cv |  |-  b | 
						
							| 16 | 11 15 14 | co |  |-  ( a ( n WWalksNOn g ) b ) | 
						
							| 17 |  | vf |  |-  f | 
						
							| 18 | 17 | cv |  |-  f | 
						
							| 19 |  | cspthson |  |-  SPathsOn | 
						
							| 20 | 7 19 | cfv |  |-  ( SPathsOn ` g ) | 
						
							| 21 | 11 15 20 | co |  |-  ( a ( SPathsOn ` g ) b ) | 
						
							| 22 | 10 | cv |  |-  w | 
						
							| 23 | 18 22 21 | wbr |  |-  f ( a ( SPathsOn ` g ) b ) w | 
						
							| 24 | 23 17 | wex |  |-  E. f f ( a ( SPathsOn ` g ) b ) w | 
						
							| 25 | 24 10 16 | crab |  |-  { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } | 
						
							| 26 | 5 9 8 8 25 | cmpo |  |-  ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) | 
						
							| 27 | 1 3 2 4 26 | cmpo |  |-  ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) ) | 
						
							| 28 | 0 27 | wceq |  |-  WSPathsNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( a ( n WWalksNOn g ) b ) | E. f f ( a ( SPathsOn ` g ) b ) w } ) ) |