| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlks.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | wwlks.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | df-wwlks |  |-  WWalks = ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) | 
						
							| 4 |  | fveq2 |  |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( g = G -> ( Vtx ` g ) = V ) | 
						
							| 6 |  | wrdeq |  |-  ( ( Vtx ` g ) = V -> Word ( Vtx ` g ) = Word V ) | 
						
							| 7 | 5 6 | syl |  |-  ( g = G -> Word ( Vtx ` g ) = Word V ) | 
						
							| 8 |  | fveq2 |  |-  ( g = G -> ( Edg ` g ) = ( Edg ` G ) ) | 
						
							| 9 | 8 2 | eqtr4di |  |-  ( g = G -> ( Edg ` g ) = E ) | 
						
							| 10 | 9 | eleq2d |  |-  ( g = G -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) <-> { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) | 
						
							| 11 | 10 | ralbidv |  |-  ( g = G -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) <-> A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) | 
						
							| 12 | 11 | anbi2d |  |-  ( g = G -> ( ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) <-> ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) ) | 
						
							| 13 | 7 12 | rabeqbidv |  |-  ( g = G -> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } ) | 
						
							| 14 |  | id |  |-  ( G e. _V -> G e. _V ) | 
						
							| 15 | 1 | fvexi |  |-  V e. _V | 
						
							| 16 | 15 | a1i |  |-  ( G e. _V -> V e. _V ) | 
						
							| 17 |  | wrdexg |  |-  ( V e. _V -> Word V e. _V ) | 
						
							| 18 |  | rabexg |  |-  ( Word V e. _V -> { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } e. _V ) | 
						
							| 19 | 16 17 18 | 3syl |  |-  ( G e. _V -> { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } e. _V ) | 
						
							| 20 | 3 13 14 19 | fvmptd3 |  |-  ( G e. _V -> ( WWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } ) | 
						
							| 21 |  | fvprc |  |-  ( -. G e. _V -> ( WWalks ` G ) = (/) ) | 
						
							| 22 |  | fvprc |  |-  ( -. G e. _V -> ( Vtx ` G ) = (/) ) | 
						
							| 23 | 1 22 | eqtrid |  |-  ( -. G e. _V -> V = (/) ) | 
						
							| 24 |  | wrdeq |  |-  ( V = (/) -> Word V = Word (/) ) | 
						
							| 25 | 23 24 | syl |  |-  ( -. G e. _V -> Word V = Word (/) ) | 
						
							| 26 | 25 | eleq2d |  |-  ( -. G e. _V -> ( w e. Word V <-> w e. Word (/) ) ) | 
						
							| 27 |  | 0wrd0 |  |-  ( w e. Word (/) <-> w = (/) ) | 
						
							| 28 | 26 27 | bitrdi |  |-  ( -. G e. _V -> ( w e. Word V <-> w = (/) ) ) | 
						
							| 29 |  | nne |  |-  ( -. w =/= (/) <-> w = (/) ) | 
						
							| 30 | 29 | biimpri |  |-  ( w = (/) -> -. w =/= (/) ) | 
						
							| 31 | 30 | intnanrd |  |-  ( w = (/) -> -. ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) | 
						
							| 32 | 28 31 | biimtrdi |  |-  ( -. G e. _V -> ( w e. Word V -> -. ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) ) | 
						
							| 33 | 32 | ralrimiv |  |-  ( -. G e. _V -> A. w e. Word V -. ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) | 
						
							| 34 |  | rabeq0 |  |-  ( { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } = (/) <-> A. w e. Word V -. ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) ) | 
						
							| 35 | 33 34 | sylibr |  |-  ( -. G e. _V -> { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } = (/) ) | 
						
							| 36 | 21 35 | eqtr4d |  |-  ( -. G e. _V -> ( WWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } ) | 
						
							| 37 | 20 36 | pm2.61i |  |-  ( WWalks ` G ) = { w e. Word V | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. E ) } |