| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlks.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | wwlks.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | df-wwlks | ⊢ WWalks  =  ( 𝑔  ∈  V  ↦  { 𝑤  ∈  Word  ( Vtx ‘ 𝑔 )  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝑔 ) ) } ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 6 |  | wrdeq | ⊢ ( ( Vtx ‘ 𝑔 )  =  𝑉  →  Word  ( Vtx ‘ 𝑔 )  =  Word  𝑉 ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑔  =  𝐺  →  Word  ( Vtx ‘ 𝑔 )  =  Word  𝑉 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Edg ‘ 𝑔 )  =  ( Edg ‘ 𝐺 ) ) | 
						
							| 9 | 8 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Edg ‘ 𝑔 )  =  𝐸 ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝑔 )  ↔  { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 11 | 10 | ralbidv | ⊢ ( 𝑔  =  𝐺  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝑔 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑔  =  𝐺  →  ( ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝑔 ) )  ↔  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 13 | 7 12 | rabeqbidv | ⊢ ( 𝑔  =  𝐺  →  { 𝑤  ∈  Word  ( Vtx ‘ 𝑔 )  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝑔 ) ) }  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) } ) | 
						
							| 14 |  | id | ⊢ ( 𝐺  ∈  V  →  𝐺  ∈  V ) | 
						
							| 15 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( 𝐺  ∈  V  →  𝑉  ∈  V ) | 
						
							| 17 |  | wrdexg | ⊢ ( 𝑉  ∈  V  →  Word  𝑉  ∈  V ) | 
						
							| 18 |  | rabexg | ⊢ ( Word  𝑉  ∈  V  →  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) }  ∈  V ) | 
						
							| 19 | 16 17 18 | 3syl | ⊢ ( 𝐺  ∈  V  →  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) }  ∈  V ) | 
						
							| 20 | 3 13 14 19 | fvmptd3 | ⊢ ( 𝐺  ∈  V  →  ( WWalks ‘ 𝐺 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) } ) | 
						
							| 21 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( WWalks ‘ 𝐺 )  =  ∅ ) | 
						
							| 22 |  | fvprc | ⊢ ( ¬  𝐺  ∈  V  →  ( Vtx ‘ 𝐺 )  =  ∅ ) | 
						
							| 23 | 1 22 | eqtrid | ⊢ ( ¬  𝐺  ∈  V  →  𝑉  =  ∅ ) | 
						
							| 24 |  | wrdeq | ⊢ ( 𝑉  =  ∅  →  Word  𝑉  =  Word  ∅ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ¬  𝐺  ∈  V  →  Word  𝑉  =  Word  ∅ ) | 
						
							| 26 | 25 | eleq2d | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑤  ∈  Word  𝑉  ↔  𝑤  ∈  Word  ∅ ) ) | 
						
							| 27 |  | 0wrd0 | ⊢ ( 𝑤  ∈  Word  ∅  ↔  𝑤  =  ∅ ) | 
						
							| 28 | 26 27 | bitrdi | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑤  ∈  Word  𝑉  ↔  𝑤  =  ∅ ) ) | 
						
							| 29 |  | nne | ⊢ ( ¬  𝑤  ≠  ∅  ↔  𝑤  =  ∅ ) | 
						
							| 30 | 29 | biimpri | ⊢ ( 𝑤  =  ∅  →  ¬  𝑤  ≠  ∅ ) | 
						
							| 31 | 30 | intnanrd | ⊢ ( 𝑤  =  ∅  →  ¬  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 32 | 28 31 | biimtrdi | ⊢ ( ¬  𝐺  ∈  V  →  ( 𝑤  ∈  Word  𝑉  →  ¬  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) ) | 
						
							| 33 | 32 | ralrimiv | ⊢ ( ¬  𝐺  ∈  V  →  ∀ 𝑤  ∈  Word  𝑉 ¬  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 34 |  | rabeq0 | ⊢ ( { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) }  =  ∅  ↔  ∀ 𝑤  ∈  Word  𝑉 ¬  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) ) | 
						
							| 35 | 33 34 | sylibr | ⊢ ( ¬  𝐺  ∈  V  →  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) }  =  ∅ ) | 
						
							| 36 | 21 35 | eqtr4d | ⊢ ( ¬  𝐺  ∈  V  →  ( WWalks ‘ 𝐺 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) } ) | 
						
							| 37 | 20 36 | pm2.61i | ⊢ ( WWalks ‘ 𝐺 )  =  { 𝑤  ∈  Word  𝑉  ∣  ( 𝑤  ≠  ∅  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  𝐸 ) } |