| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cwwlks |
|- WWalks |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vw |
|- w |
| 4 |
|
cvtx |
|- Vtx |
| 5 |
1
|
cv |
|- g |
| 6 |
5 4
|
cfv |
|- ( Vtx ` g ) |
| 7 |
6
|
cword |
|- Word ( Vtx ` g ) |
| 8 |
3
|
cv |
|- w |
| 9 |
|
c0 |
|- (/) |
| 10 |
8 9
|
wne |
|- w =/= (/) |
| 11 |
|
vi |
|- i |
| 12 |
|
cc0 |
|- 0 |
| 13 |
|
cfzo |
|- ..^ |
| 14 |
|
chash |
|- # |
| 15 |
8 14
|
cfv |
|- ( # ` w ) |
| 16 |
|
cmin |
|- - |
| 17 |
|
c1 |
|- 1 |
| 18 |
15 17 16
|
co |
|- ( ( # ` w ) - 1 ) |
| 19 |
12 18 13
|
co |
|- ( 0 ..^ ( ( # ` w ) - 1 ) ) |
| 20 |
11
|
cv |
|- i |
| 21 |
20 8
|
cfv |
|- ( w ` i ) |
| 22 |
|
caddc |
|- + |
| 23 |
20 17 22
|
co |
|- ( i + 1 ) |
| 24 |
23 8
|
cfv |
|- ( w ` ( i + 1 ) ) |
| 25 |
21 24
|
cpr |
|- { ( w ` i ) , ( w ` ( i + 1 ) ) } |
| 26 |
|
cedg |
|- Edg |
| 27 |
5 26
|
cfv |
|- ( Edg ` g ) |
| 28 |
25 27
|
wcel |
|- { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) |
| 29 |
28 11 19
|
wral |
|- A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) |
| 30 |
10 29
|
wa |
|- ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) |
| 31 |
30 3 7
|
crab |
|- { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } |
| 32 |
1 2 31
|
cmpt |
|- ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) |
| 33 |
0 32
|
wceq |
|- WWalks = ( g e. _V |-> { w e. Word ( Vtx ` g ) | ( w =/= (/) /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` g ) ) } ) |