Metamath Proof Explorer


Theorem wlkn0

Description: The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Assertion wlkn0
|- ( F ( Walks ` G ) P -> P =/= (/) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
2 1 wlkp
 |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) )
3 fdm
 |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) )
4 3 eqcomd
 |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( 0 ... ( # ` F ) ) = dom P )
5 2 4 syl
 |-  ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) = dom P )
6 wlkcl
 |-  ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 )
7 elnn0uz
 |-  ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) )
8 fzn0
 |-  ( ( 0 ... ( # ` F ) ) =/= (/) <-> ( # ` F ) e. ( ZZ>= ` 0 ) )
9 7 8 sylbb2
 |-  ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) =/= (/) )
10 6 9 syl
 |-  ( F ( Walks ` G ) P -> ( 0 ... ( # ` F ) ) =/= (/) )
11 5 10 eqnetrrd
 |-  ( F ( Walks ` G ) P -> dom P =/= (/) )
12 frel
 |-  ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Rel P )
13 2 12 syl
 |-  ( F ( Walks ` G ) P -> Rel P )
14 reldm0
 |-  ( Rel P -> ( P = (/) <-> dom P = (/) ) )
15 14 necon3bid
 |-  ( Rel P -> ( P =/= (/) <-> dom P =/= (/) ) )
16 13 15 syl
 |-  ( F ( Walks ` G ) P -> ( P =/= (/) <-> dom P =/= (/) ) )
17 11 16 mpbird
 |-  ( F ( Walks ` G ) P -> P =/= (/) )