Metamath Proof Explorer


Theorem wlkn0

Description: The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018) (Revised by AV, 2-Jan-2021)

Ref Expression
Assertion wlkn0 FWalksGPP

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 wlkp FWalksGPP:0FVtxG
3 fdm P:0FVtxGdomP=0F
4 3 eqcomd P:0FVtxG0F=domP
5 2 4 syl FWalksGP0F=domP
6 wlkcl FWalksGPF0
7 elnn0uz F0F0
8 fzn0 0FF0
9 7 8 sylbb2 F00F
10 6 9 syl FWalksGP0F
11 5 10 eqnetrrd FWalksGPdomP
12 frel P:0FVtxGRelP
13 2 12 syl FWalksGPRelP
14 reldm0 RelPP=domP=
15 14 necon3bid RelPPdomP
16 13 15 syl FWalksGPPdomP
17 11 16 mpbird FWalksGPP