Metamath Proof Explorer


Definition df-wwlksnon

Description: Define the collection of walks of a fixed length with particular endpoints as word over the set of vertices. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion df-wwlksnon WWalksNOn=n0,gVaVtxg,bVtxgwnWWalksNg|w0=awn=b

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwwlksnon classWWalksNOn
1 vn setvarn
2 cn0 class0
3 vg setvarg
4 cvv classV
5 va setvara
6 cvtx classVtx
7 3 cv setvarg
8 7 6 cfv classVtxg
9 vb setvarb
10 vw setvarw
11 1 cv setvarn
12 cwwlksn classWWalksN
13 11 7 12 co classnWWalksNg
14 10 cv setvarw
15 cc0 class0
16 15 14 cfv classw0
17 5 cv setvara
18 16 17 wceq wffw0=a
19 11 14 cfv classwn
20 9 cv setvarb
21 19 20 wceq wffwn=b
22 18 21 wa wffw0=awn=b
23 22 10 13 crab classwnWWalksNg|w0=awn=b
24 5 9 8 8 23 cmpo classaVtxg,bVtxgwnWWalksNg|w0=awn=b
25 1 3 2 4 24 cmpo classn0,gVaVtxg,bVtxgwnWWalksNg|w0=awn=b
26 0 25 wceq wffWWalksNOn=n0,gVaVtxg,bVtxgwnWWalksNg|w0=awn=b