Metamath Proof Explorer


Definition df-wwlksn

Description: Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks . (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)

Ref Expression
Assertion df-wwlksn WWalksN=n0,gVwWWalksg|w=n+1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwwlksn classWWalksN
1 vn setvarn
2 cn0 class0
3 vg setvarg
4 cvv classV
5 vw setvarw
6 cwwlks classWWalks
7 3 cv setvarg
8 7 6 cfv classWWalksg
9 chash class.
10 5 cv setvarw
11 10 9 cfv classw
12 1 cv setvarn
13 caddc class+
14 c1 class1
15 12 14 13 co classn+1
16 11 15 wceq wffw=n+1
17 16 5 8 crab classwWWalksg|w=n+1
18 1 3 2 4 17 cmpo classn0,gVwWWalksg|w=n+1
19 0 18 wceq wffWWalksN=n0,gVwWWalksg|w=n+1