Metamath Proof Explorer


Definition df-wlks

Description: Define the set of all walks (in a hypergraph). Such walks correspond to the s-walks "on the vertex level" (with s = 1), and also to 1-walks "on the edge level" (see wlk1walk ) discussed in Aksoy et al. The predicate F ( WalksG ) P can be read as "The pair <. F , P >. represents a walk in a graph G ", see also iswlk .

The condition { ( pk ) , ( p( k + 1 ) ) } C_ ( ( iEdgg )( fk ) ) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. ( pk ) = ( p( k + 1 ) ) should be allowed only if there is a loop at ( pk ) . Otherwise, C would be fulfilled by each edge containing ( pk ) .

According to the definition of Bollobas p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020)

Ref Expression
Assertion df-wlks Walks=gVfp|fWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwlks classWalks
1 vg setvarg
2 cvv classV
3 vf setvarf
4 vp setvarp
5 3 cv setvarf
6 ciedg classiEdg
7 1 cv setvarg
8 7 6 cfv classiEdgg
9 8 cdm classdomiEdgg
10 9 cword classWorddomiEdgg
11 5 10 wcel wfffWorddomiEdgg
12 4 cv setvarp
13 cc0 class0
14 cfz class
15 chash class.
16 5 15 cfv classf
17 13 16 14 co class0f
18 cvtx classVtx
19 7 18 cfv classVtxg
20 17 19 12 wf wffp:0fVtxg
21 vk setvark
22 cfzo class..^
23 13 16 22 co class0..^f
24 21 cv setvark
25 24 12 cfv classpk
26 caddc class+
27 c1 class1
28 24 27 26 co classk+1
29 28 12 cfv classpk+1
30 25 29 wceq wffpk=pk+1
31 24 5 cfv classfk
32 31 8 cfv classiEdggfk
33 25 csn classpk
34 32 33 wceq wffiEdggfk=pk
35 25 29 cpr classpkpk+1
36 35 32 wss wffpkpk+1iEdggfk
37 30 34 36 wif wffif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk
38 37 21 23 wral wffk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk
39 11 20 38 w3a wfffWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk
40 39 3 4 copab classfp|fWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk
41 1 2 40 cmpt classgVfp|fWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk
42 0 41 wceq wffWalks=gVfp|fWorddomiEdggp:0fVtxgk0..^fif-pk=pk+1iEdggfk=pkpkpk+1iEdggfk