Metamath Proof Explorer


Definition df-wlks

Description: Define the set of all walks (in a hypergraph). Such walks correspond to the s-walks "on the vertex level" (with s = 1), and also to 1-walks "on the edge level" (see wlk1walk ) discussed in Aksoy et al. The predicate F ( WalksG ) P can be read as "The pair <. F , P >. represents a walk in a graph G ", see also iswlk .

The condition { ( pk ) , ( p( k + 1 ) ) } C_ ( ( iEdgg )( fk ) ) (hereinafter referred to as C) would not be sufficient, because the repetition of a vertex in a walk (i.e. ( pk ) = ( p( k + 1 ) ) should be allowed only if there is a loop at ( pk ) . Otherwise, C would be fulfilled by each edge containing ( pk ) .

According to the definition of Bollobas p. 4.: "A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) ...", a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by AV, 30-Dec-2020)

Ref Expression
Assertion df-wlks Walks = ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝑔 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) } , { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwlks Walks
1 vg 𝑔
2 cvv V
3 vf 𝑓
4 vp 𝑝
5 3 cv 𝑓
6 ciedg iEdg
7 1 cv 𝑔
8 7 6 cfv ( iEdg ‘ 𝑔 )
9 8 cdm dom ( iEdg ‘ 𝑔 )
10 9 cword Word dom ( iEdg ‘ 𝑔 )
11 5 10 wcel 𝑓 ∈ Word dom ( iEdg ‘ 𝑔 )
12 4 cv 𝑝
13 cc0 0
14 cfz ...
15 chash
16 5 15 cfv ( ♯ ‘ 𝑓 )
17 13 16 14 co ( 0 ... ( ♯ ‘ 𝑓 ) )
18 cvtx Vtx
19 7 18 cfv ( Vtx ‘ 𝑔 )
20 17 19 12 wf 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 )
21 vk 𝑘
22 cfzo ..^
23 13 16 22 co ( 0 ..^ ( ♯ ‘ 𝑓 ) )
24 21 cv 𝑘
25 24 12 cfv ( 𝑝𝑘 )
26 caddc +
27 c1 1
28 24 27 26 co ( 𝑘 + 1 )
29 28 12 cfv ( 𝑝 ‘ ( 𝑘 + 1 ) )
30 25 29 wceq ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) )
31 24 5 cfv ( 𝑓𝑘 )
32 31 8 cfv ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) )
33 25 csn { ( 𝑝𝑘 ) }
34 32 33 wceq ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) }
35 25 29 cpr { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) }
36 35 32 wss { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) )
37 30 34 36 wif if- ( ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) } , { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) )
38 37 21 23 wral 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) } , { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) )
39 11 20 38 w3a ( 𝑓 ∈ Word dom ( iEdg ‘ 𝑔 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) } , { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) ) )
40 39 3 4 copab { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝑔 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) } , { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) ) ) }
41 1 2 40 cmpt ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝑔 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) } , { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) ) ) } )
42 0 41 wceq Walks = ( 𝑔 ∈ V ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝑔 ) ∧ 𝑝 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ ( Vtx ‘ 𝑔 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) if- ( ( 𝑝𝑘 ) = ( 𝑝 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) = { ( 𝑝𝑘 ) } , { ( 𝑝𝑘 ) , ( 𝑝 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑔 ) ‘ ( 𝑓𝑘 ) ) ) ) } )