Metamath Proof Explorer


Definition df-wlkson

Description: Define the collection of walks with particular endpoints (in a hypergraph). The predicate F ( A ( WalksOnG ) B ) P can be read as "The pair <. F , P >. represents a walk from vertex A to vertex B in a graph G ", see also iswlkon . This corresponds to the "x0-x(l)-walks", see Definition in Bollobas p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Assertion df-wlkson WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwlkson WalksOn
1 vg 𝑔
2 cvv V
3 va 𝑎
4 cvtx Vtx
5 1 cv 𝑔
6 5 4 cfv ( Vtx ‘ 𝑔 )
7 vb 𝑏
8 vf 𝑓
9 vp 𝑝
10 8 cv 𝑓
11 cwlks Walks
12 5 11 cfv ( Walks ‘ 𝑔 )
13 9 cv 𝑝
14 10 13 12 wbr 𝑓 ( Walks ‘ 𝑔 ) 𝑝
15 cc0 0
16 15 13 cfv ( 𝑝 ‘ 0 )
17 3 cv 𝑎
18 16 17 wceq ( 𝑝 ‘ 0 ) = 𝑎
19 chash
20 10 19 cfv ( ♯ ‘ 𝑓 )
21 20 13 cfv ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) )
22 7 cv 𝑏
23 21 22 wceq ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏
24 14 18 23 w3a ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 )
25 24 8 9 copab { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) }
26 3 7 6 6 25 cmpo ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } )
27 1 2 26 cmpt ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) )
28 0 27 wceq WalksOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { ⟨ 𝑓 , 𝑝 ⟩ ∣ ( 𝑓 ( Walks ‘ 𝑔 ) 𝑝 ∧ ( 𝑝 ‘ 0 ) = 𝑎 ∧ ( 𝑝 ‘ ( ♯ ‘ 𝑓 ) ) = 𝑏 ) } ) )