| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ewlksfval.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
df-ewlks |
⊢ EdgWalks = ( 𝑔 ∈ V , 𝑠 ∈ ℕ0* ↦ { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 3 |
2
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → EdgWalks = ( 𝑔 ∈ V , 𝑠 ∈ ℕ0* ↦ { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) ) |
| 4 |
|
fvexd |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( iEdg ‘ 𝑔 ) ∈ V ) |
| 5 |
|
simpr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑖 = ( iEdg ‘ 𝑔 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
| 9 |
5 8
|
eqtrd |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑖 = ( iEdg ‘ 𝐺 ) ) |
| 10 |
9
|
dmeqd |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → dom 𝑖 = dom ( iEdg ‘ 𝐺 ) ) |
| 11 |
|
wrdeq |
⊢ ( dom 𝑖 = dom ( iEdg ‘ 𝐺 ) → Word dom 𝑖 = Word dom ( iEdg ‘ 𝐺 ) ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → Word dom 𝑖 = Word dom ( iEdg ‘ 𝐺 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑓 ∈ Word dom 𝑖 ↔ 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → 𝑠 = 𝑆 ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → 𝑠 = 𝑆 ) |
| 16 |
9
|
fveq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ) |
| 17 |
9
|
fveq1d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 18 |
16 17
|
ineq12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 19 |
18
|
fveq2d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
| 20 |
15 19
|
breq12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 22 |
13 21
|
anbi12d |
⊢ ( ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ∧ 𝑖 = ( iEdg ‘ 𝑔 ) ) → ( ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
| 23 |
4 22
|
sbcied |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → ( [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
| 24 |
23
|
abbidv |
⊢ ( ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) → { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) ∧ ( 𝑔 = 𝐺 ∧ 𝑠 = 𝑆 ) ) → { 𝑓 ∣ [ ( iEdg ‘ 𝑔 ) / 𝑖 ] ( 𝑓 ∈ Word dom 𝑖 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑠 ≤ ( ♯ ‘ ( ( 𝑖 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝑖 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 26 |
|
elex |
⊢ ( 𝐺 ∈ 𝑊 → 𝐺 ∈ V ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → 𝐺 ∈ V ) |
| 28 |
|
simpr |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → 𝑆 ∈ ℕ0* ) |
| 29 |
|
df-rab |
⊢ { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } |
| 30 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
| 31 |
30
|
dmex |
⊢ dom ( iEdg ‘ 𝐺 ) ∈ V |
| 32 |
31
|
wrdexi |
⊢ Word dom ( iEdg ‘ 𝐺 ) ∈ V |
| 33 |
32
|
rabex |
⊢ { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ∈ V |
| 34 |
33
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∣ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) } ∈ V ) |
| 35 |
29 34
|
eqeltrrid |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ∈ V ) |
| 36 |
3 25 27 28 35
|
ovmpod |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 37 |
1
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 38 |
37
|
a1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( iEdg ‘ 𝐺 ) = 𝐼 ) |
| 39 |
38
|
dmeqd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → dom ( iEdg ‘ 𝐺 ) = dom 𝐼 ) |
| 40 |
|
wrdeq |
⊢ ( dom ( iEdg ‘ 𝐺 ) = dom 𝐼 → Word dom ( iEdg ‘ 𝐺 ) = Word dom 𝐼 ) |
| 41 |
39 40
|
syl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → Word dom ( iEdg ‘ 𝐺 ) = Word dom 𝐼 ) |
| 42 |
41
|
eleq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ↔ 𝑓 ∈ Word dom 𝐼 ) ) |
| 43 |
38
|
fveq1d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ) |
| 44 |
38
|
fveq1d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 45 |
43 44
|
ineq12d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) = ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
| 47 |
46
|
breq2d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 48 |
47
|
ralbidv |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 49 |
42 48
|
anbi12d |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) ) |
| 50 |
49
|
abbidv |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → { 𝑓 ∣ ( 𝑓 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |
| 51 |
36 50
|
eqtrd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑆 ∈ ℕ0* ) → ( 𝐺 EdgWalks 𝑆 ) = { 𝑓 ∣ ( 𝑓 ∈ Word dom 𝐼 ∧ ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝑓 ) ) 𝑆 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝑓 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) } ) |