Metamath Proof Explorer


Definition df-wlkson

Description: Define the collection of walks with particular endpoints (in a hypergraph). The predicate F ( A ( WalksOnG ) B ) P can be read as "The pair <. F , P >. represents a walk from vertex A to vertex B in a graph G ", see also iswlkon . This corresponds to the "x0-x(l)-walks", see Definition in Bollobas p. 5. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017) (Revised by AV, 28-Dec-2020)

Ref Expression
Assertion df-wlkson WalksOn=gVaVtxg,bVtxgfp|fWalksgpp0=apf=b

Detailed syntax breakdown

Step Hyp Ref Expression
0 cwlkson classWalksOn
1 vg setvarg
2 cvv classV
3 va setvara
4 cvtx classVtx
5 1 cv setvarg
6 5 4 cfv classVtxg
7 vb setvarb
8 vf setvarf
9 vp setvarp
10 8 cv setvarf
11 cwlks classWalks
12 5 11 cfv classWalksg
13 9 cv setvarp
14 10 13 12 wbr wfffWalksgp
15 cc0 class0
16 15 13 cfv classp0
17 3 cv setvara
18 16 17 wceq wffp0=a
19 chash class.
20 10 19 cfv classf
21 20 13 cfv classpf
22 7 cv setvarb
23 21 22 wceq wffpf=b
24 14 18 23 w3a wfffWalksgpp0=apf=b
25 24 8 9 copab classfp|fWalksgpp0=apf=b
26 3 7 6 6 25 cmpo classaVtxg,bVtxgfp|fWalksgpp0=apf=b
27 1 2 26 cmpt classgVaVtxg,bVtxgfp|fWalksgpp0=apf=b
28 0 27 wceq wffWalksOn=gVaVtxg,bVtxgfp|fWalksgpp0=apf=b