Metamath Proof Explorer


Theorem iswlkon

Description: Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017) (Revised by AV, 31-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypothesis wlkson.v V=VtxG
Assertion iswlkon AVBVFUPZFAWalksOnGBPFWalksGPP0=APF=B

Proof

Step Hyp Ref Expression
1 wlkson.v V=VtxG
2 1 wlkson AVBVAWalksOnGB=fp|fWalksGpp0=Apf=B
3 fveq1 p=Pp0=P0
4 3 adantl f=Fp=Pp0=P0
5 4 eqeq1d f=Fp=Pp0=AP0=A
6 simpr f=Fp=Pp=P
7 fveq2 f=Ff=F
8 7 adantr f=Fp=Pf=F
9 6 8 fveq12d f=Fp=Ppf=PF
10 9 eqeq1d f=Fp=Ppf=BPF=B
11 2 5 10 2rbropap AVBVFUPZFAWalksOnGBPFWalksGPP0=APF=B
12 11 3expb AVBVFUPZFAWalksOnGBPFWalksGPP0=APF=B