| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlk1walk.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 2 |
|
wlkv |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) |
| 3 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 5 |
3 4
|
iswlk |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) ) |
| 6 |
|
fvex |
⊢ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∈ V |
| 7 |
6
|
inex1 |
⊢ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V |
| 8 |
|
fzo0ss1 |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 9 |
8
|
sseli |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 10 |
|
wkslem1 |
⊢ ( 𝑖 = 𝑘 → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 11 |
10
|
rspcv |
⊢ ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 12 |
9 11
|
syl |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 14 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) ) |
| 15 |
|
fz1fzo0m1 |
⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝐹 ) ) → ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 16 |
|
wkslem1 |
⊢ ( 𝑖 = ( 𝑘 − 1 ) → ( if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 17 |
16
|
rspcv |
⊢ ( ( 𝑘 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 18 |
14 15 17
|
3syl |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 19 |
18
|
imp |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) |
| 20 |
|
df-ifp |
⊢ ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 21 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑘 ∈ ℤ ) |
| 22 |
|
zcn |
⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) |
| 23 |
|
eqidd |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 − 1 ) = ( 𝑘 − 1 ) ) |
| 24 |
|
npcan1 |
⊢ ( 𝑘 ∈ ℂ → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 25 |
|
wkslem2 |
⊢ ( ( ( 𝑘 − 1 ) = ( 𝑘 − 1 ) ∧ ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 26 |
23 24 25
|
syl2anc |
⊢ ( 𝑘 ∈ ℂ → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 27 |
21 22 26
|
3syl |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 28 |
|
df-ifp |
⊢ ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) ∨ ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) ) |
| 29 |
|
sneq |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } = { ( 𝑃 ‘ 𝑘 ) } ) |
| 30 |
29
|
eqeq2d |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 31 |
|
fvex |
⊢ ( 𝑃 ‘ 𝑘 ) ∈ V |
| 32 |
31
|
snid |
⊢ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } |
| 33 |
1
|
fveq1i |
⊢ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) |
| 34 |
33
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
| 35 |
|
eleq2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 36 |
34 35
|
bitrid |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 37 |
32 36
|
mpbiri |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
| 38 |
|
eleq2 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 39 |
32 38
|
mpbiri |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 40 |
1
|
fveq1i |
⊢ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) |
| 41 |
39 40
|
eleqtrrdi |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 42 |
37 41
|
anim12i |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 43 |
42
|
ex |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 44 |
30 43
|
biimtrdi |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 45 |
44
|
imp |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 46 |
45
|
com12 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 47 |
46
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 48 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ V |
| 49 |
31 48
|
prss |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 50 |
1
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 51 |
50
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) |
| 52 |
51
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 |
52
|
biimpi |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 55 |
49 54
|
sylbir |
⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 56 |
37 55
|
anim12i |
⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 57 |
56
|
ex |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 58 |
30 57
|
biimtrdi |
⊢ ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 59 |
58
|
imp |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 60 |
59
|
com12 |
⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 61 |
60
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 62 |
47 61
|
jaoi |
⊢ ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 63 |
62
|
com12 |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 64 |
|
fvex |
⊢ ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ V |
| 65 |
64 31
|
prss |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ↔ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
| 66 |
50
|
fveq1i |
⊢ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) |
| 67 |
66
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
| 68 |
67
|
biimpi |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) |
| 69 |
40
|
eleq2i |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 70 |
69 38
|
bitrid |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∈ { ( 𝑃 ‘ 𝑘 ) } ) ) |
| 71 |
32 70
|
mpbiri |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 72 |
68 71
|
anim12i |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 73 |
72
|
ex |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 74 |
73
|
adantl |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 75 |
65 74
|
sylbir |
⊢ ( { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 76 |
75
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 77 |
76
|
com12 |
⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 79 |
67 52
|
anbi12i |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 80 |
79
|
biimpi |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 81 |
80
|
ex |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 82 |
81
|
adantl |
⊢ ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 83 |
65 82
|
sylbir |
⊢ ( { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 84 |
83
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 85 |
84
|
com12 |
⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 86 |
85
|
adantr |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 87 |
49 86
|
sylbir |
⊢ ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 88 |
87
|
adantl |
⊢ ( ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 89 |
78 88
|
jaoi |
⊢ ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 90 |
89
|
com12 |
⊢ ( ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 91 |
63 90
|
jaoi |
⊢ ( ( ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } ) ∨ ( ¬ ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) ∧ { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 92 |
28 91
|
sylbi |
⊢ ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ 𝑘 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ 𝑘 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 93 |
27 92
|
biimtrdi |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 94 |
93
|
com3r |
⊢ ( ( ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } ) ∨ ( ¬ ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 95 |
20 94
|
sylbi |
⊢ ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 96 |
95
|
com12 |
⊢ ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( if- ( ( 𝑃 ‘ ( 𝑘 − 1 ) ) = ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) = { ( 𝑃 ‘ ( 𝑘 − 1 ) ) } , { ( 𝑃 ‘ ( 𝑘 − 1 ) ) , ( 𝑃 ‘ ( ( 𝑘 − 1 ) + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 98 |
13 19 97
|
mp2d |
⊢ ( ( 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 99 |
98
|
ancoms |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 100 |
|
inelcm |
⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∧ ( 𝑃 ‘ 𝑘 ) ∈ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≠ ∅ ) |
| 101 |
99 100
|
syl |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≠ ∅ ) |
| 102 |
|
hashge1 |
⊢ ( ( ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∈ V ∧ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ≠ ∅ ) → 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 103 |
7 101 102
|
sylancr |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ∧ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) → 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 104 |
103
|
ralrimiva |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 105 |
104
|
3ad2ant3 |
⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( 𝑖 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) } , { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 106 |
5 105
|
biimtrdi |
⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 107 |
2 106
|
mpcom |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ∀ 𝑘 ∈ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1 ≤ ( ♯ ‘ ( ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑘 − 1 ) ) ) ∩ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |