| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐵 ) ) |
| 2 |
|
fvoveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝑃 ‘ ( 𝐴 + 1 ) ) = ( 𝑃 ‘ ( 𝐵 + 1 ) ) ) |
| 3 |
1 2
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) ↔ ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ ( 𝐵 + 1 ) ) ) ) |
| 4 |
|
2fveq3 |
⊢ ( 𝐴 = 𝐵 → ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 5 |
1
|
sneqd |
⊢ ( 𝐴 = 𝐵 → { ( 𝑃 ‘ 𝐴 ) } = { ( 𝑃 ‘ 𝐵 ) } ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } ) ) |
| 7 |
1 2
|
preq12d |
⊢ ( 𝐴 = 𝐵 → { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } = { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ ( 𝐵 + 1 ) ) } ) |
| 8 |
7 4
|
sseq12d |
⊢ ( 𝐴 = 𝐵 → ( { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ ( 𝐵 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 9 |
3 6 8
|
ifpbi123d |
⊢ ( 𝐴 = 𝐵 → ( if- ( ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } , { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ ( 𝐵 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } , { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ ( 𝐵 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |