Metamath Proof Explorer


Theorem wkslem1

Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021)

Ref Expression
Assertion wkslem1 ( 𝐴 = 𝐵 → ( if- ( ( 𝑃𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝐴 ) ) = { ( 𝑃𝐴 ) } , { ( 𝑃𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝐴 ) ) ) ↔ if- ( ( 𝑃𝐵 ) = ( 𝑃 ‘ ( 𝐵 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝐵 ) ) = { ( 𝑃𝐵 ) } , { ( 𝑃𝐵 ) , ( 𝑃 ‘ ( 𝐵 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝐵 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝐴 = 𝐵 → ( 𝑃𝐴 ) = ( 𝑃𝐵 ) )
2 fvoveq1 ( 𝐴 = 𝐵 → ( 𝑃 ‘ ( 𝐴 + 1 ) ) = ( 𝑃 ‘ ( 𝐵 + 1 ) ) )
3 1 2 eqeq12d ( 𝐴 = 𝐵 → ( ( 𝑃𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) ↔ ( 𝑃𝐵 ) = ( 𝑃 ‘ ( 𝐵 + 1 ) ) ) )
4 2fveq3 ( 𝐴 = 𝐵 → ( 𝐼 ‘ ( 𝐹𝐴 ) ) = ( 𝐼 ‘ ( 𝐹𝐵 ) ) )
5 1 sneqd ( 𝐴 = 𝐵 → { ( 𝑃𝐴 ) } = { ( 𝑃𝐵 ) } )
6 4 5 eqeq12d ( 𝐴 = 𝐵 → ( ( 𝐼 ‘ ( 𝐹𝐴 ) ) = { ( 𝑃𝐴 ) } ↔ ( 𝐼 ‘ ( 𝐹𝐵 ) ) = { ( 𝑃𝐵 ) } ) )
7 1 2 preq12d ( 𝐴 = 𝐵 → { ( 𝑃𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } = { ( 𝑃𝐵 ) , ( 𝑃 ‘ ( 𝐵 + 1 ) ) } )
8 7 4 sseq12d ( 𝐴 = 𝐵 → ( { ( 𝑃𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝐴 ) ) ↔ { ( 𝑃𝐵 ) , ( 𝑃 ‘ ( 𝐵 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝐵 ) ) ) )
9 3 6 8 ifpbi123d ( 𝐴 = 𝐵 → ( if- ( ( 𝑃𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝐴 ) ) = { ( 𝑃𝐴 ) } , { ( 𝑃𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝐴 ) ) ) ↔ if- ( ( 𝑃𝐵 ) = ( 𝑃 ‘ ( 𝐵 + 1 ) ) , ( 𝐼 ‘ ( 𝐹𝐵 ) ) = { ( 𝑃𝐵 ) } , { ( 𝑃𝐵 ) , ( 𝑃 ‘ ( 𝐵 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹𝐵 ) ) ) ) )