Metamath Proof Explorer


Theorem wkslem1

Description: Lemma 1 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021)

Ref Expression
Assertion wkslem1 A=Bif-PA=PA+1IFA=PAPAPA+1IFAif-PB=PB+1IFB=PBPBPB+1IFB

Proof

Step Hyp Ref Expression
1 fveq2 A=BPA=PB
2 fvoveq1 A=BPA+1=PB+1
3 1 2 eqeq12d A=BPA=PA+1PB=PB+1
4 2fveq3 A=BIFA=IFB
5 1 sneqd A=BPA=PB
6 4 5 eqeq12d A=BIFA=PAIFB=PB
7 1 2 preq12d A=BPAPA+1=PBPB+1
8 7 4 sseq12d A=BPAPA+1IFAPBPB+1IFB
9 3 6 8 ifpbi123d A=Bif-PA=PA+1IFA=PAPAPA+1IFAif-PB=PB+1IFB=PBPBPB+1IFB