| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlk1walk.i |
|- I = ( iEdg ` G ) |
| 2 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
| 3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 5 |
3 4
|
iswlk |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) ) ) |
| 6 |
|
fvex |
|- ( I ` ( F ` ( k - 1 ) ) ) e. _V |
| 7 |
6
|
inex1 |
|- ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) e. _V |
| 8 |
|
fzo0ss1 |
|- ( 1 ..^ ( # ` F ) ) C_ ( 0 ..^ ( # ` F ) ) |
| 9 |
8
|
sseli |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> k e. ( 0 ..^ ( # ` F ) ) ) |
| 10 |
|
wkslem1 |
|- ( i = k -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) <-> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 11 |
10
|
rspcv |
|- ( k e. ( 0 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 12 |
9 11
|
syl |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 13 |
12
|
imp |
|- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) |
| 14 |
|
elfzofz |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> k e. ( 1 ... ( # ` F ) ) ) |
| 15 |
|
fz1fzo0m1 |
|- ( k e. ( 1 ... ( # ` F ) ) -> ( k - 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 16 |
|
wkslem1 |
|- ( i = ( k - 1 ) -> ( if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 17 |
16
|
rspcv |
|- ( ( k - 1 ) e. ( 0 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 18 |
14 15 17
|
3syl |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 19 |
18
|
imp |
|- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) |
| 20 |
|
df-ifp |
|- ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 21 |
|
elfzoelz |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> k e. ZZ ) |
| 22 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
| 23 |
|
eqidd |
|- ( k e. CC -> ( k - 1 ) = ( k - 1 ) ) |
| 24 |
|
npcan1 |
|- ( k e. CC -> ( ( k - 1 ) + 1 ) = k ) |
| 25 |
|
wkslem2 |
|- ( ( ( k - 1 ) = ( k - 1 ) /\ ( ( k - 1 ) + 1 ) = k ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 26 |
23 24 25
|
syl2anc |
|- ( k e. CC -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 27 |
21 22 26
|
3syl |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 28 |
|
df-ifp |
|- ( if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) \/ ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) ) |
| 29 |
|
sneq |
|- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> { ( P ` ( k - 1 ) ) } = { ( P ` k ) } ) |
| 30 |
29
|
eqeq2d |
|- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } <-> ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } ) ) |
| 31 |
|
fvex |
|- ( P ` k ) e. _V |
| 32 |
31
|
snid |
|- ( P ` k ) e. { ( P ` k ) } |
| 33 |
1
|
fveq1i |
|- ( I ` ( F ` ( k - 1 ) ) ) = ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) |
| 34 |
33
|
eleq2i |
|- ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) |
| 35 |
|
eleq2 |
|- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
| 36 |
34 35
|
bitrid |
|- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
| 37 |
32 36
|
mpbiri |
|- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) ) |
| 38 |
|
eleq2 |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
| 39 |
32 38
|
mpbiri |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 40 |
1
|
fveq1i |
|- ( I ` ( F ` k ) ) = ( ( iEdg ` G ) ` ( F ` k ) ) |
| 41 |
39 40
|
eleqtrrdi |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 42 |
37 41
|
anim12i |
|- ( ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 43 |
42
|
ex |
|- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 44 |
30 43
|
biimtrdi |
|- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 45 |
44
|
imp |
|- ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 46 |
45
|
com12 |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 47 |
46
|
adantl |
|- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 48 |
|
fvex |
|- ( P ` ( k + 1 ) ) e. _V |
| 49 |
31 48
|
prss |
|- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 50 |
1
|
eqcomi |
|- ( iEdg ` G ) = I |
| 51 |
50
|
fveq1i |
|- ( ( iEdg ` G ) ` ( F ` k ) ) = ( I ` ( F ` k ) ) |
| 52 |
51
|
eleq2i |
|- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) <-> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 53 |
52
|
biimpi |
|- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 54 |
53
|
adantr |
|- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 55 |
49 54
|
sylbir |
|- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 56 |
37 55
|
anim12i |
|- ( ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 57 |
56
|
ex |
|- ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` k ) } -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 58 |
30 57
|
biimtrdi |
|- ( ( P ` ( k - 1 ) ) = ( P ` k ) -> ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 59 |
58
|
imp |
|- ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 60 |
59
|
com12 |
|- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 61 |
60
|
adantl |
|- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 62 |
47 61
|
jaoi |
|- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 63 |
62
|
com12 |
|- ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 64 |
|
fvex |
|- ( P ` ( k - 1 ) ) e. _V |
| 65 |
64 31
|
prss |
|- ( ( ( P ` ( k - 1 ) ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) <-> { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) |
| 66 |
50
|
fveq1i |
|- ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = ( I ` ( F ` ( k - 1 ) ) ) |
| 67 |
66
|
eleq2i |
|- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) <-> ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) ) |
| 68 |
67
|
biimpi |
|- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) ) |
| 69 |
40
|
eleq2i |
|- ( ( P ` k ) e. ( I ` ( F ` k ) ) <-> ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) |
| 70 |
69 38
|
bitrid |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` k ) ) <-> ( P ` k ) e. { ( P ` k ) } ) ) |
| 71 |
32 70
|
mpbiri |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) e. ( I ` ( F ` k ) ) ) |
| 72 |
68 71
|
anim12i |
|- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 73 |
72
|
ex |
|- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 74 |
73
|
adantl |
|- ( ( ( P ` ( k - 1 ) ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 75 |
65 74
|
sylbir |
|- ( { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 76 |
75
|
adantl |
|- ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 77 |
76
|
com12 |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 78 |
77
|
adantl |
|- ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 79 |
67 52
|
anbi12i |
|- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 80 |
79
|
biimpi |
|- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 81 |
80
|
ex |
|- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 82 |
81
|
adantl |
|- ( ( ( P ` ( k - 1 ) ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 83 |
65 82
|
sylbir |
|- ( { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 84 |
83
|
adantl |
|- ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 85 |
84
|
com12 |
|- ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 86 |
85
|
adantr |
|- ( ( ( P ` k ) e. ( ( iEdg ` G ) ` ( F ` k ) ) /\ ( P ` ( k + 1 ) ) e. ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 87 |
49 86
|
sylbir |
|- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 88 |
87
|
adantl |
|- ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 89 |
78 88
|
jaoi |
|- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 90 |
89
|
com12 |
|- ( ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 91 |
63 90
|
jaoi |
|- ( ( ( ( P ` ( k - 1 ) ) = ( P ` k ) /\ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } ) \/ ( -. ( P ` ( k - 1 ) ) = ( P ` k ) /\ { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 92 |
28 91
|
sylbi |
|- ( if- ( ( P ` ( k - 1 ) ) = ( P ` k ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` k ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) |
| 93 |
27 92
|
biimtrdi |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 94 |
93
|
com3r |
|- ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 95 |
20 94
|
sylbi |
|- ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 96 |
95
|
com12 |
|- ( k e. ( 1 ..^ ( # ` F ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 97 |
96
|
adantr |
|- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( if- ( ( P ` ( k - 1 ) ) = ( P ` ( ( k - 1 ) + 1 ) ) , ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) = { ( P ` ( k - 1 ) ) } , { ( P ` ( k - 1 ) ) , ( P ` ( ( k - 1 ) + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) ) ) |
| 98 |
13 19 97
|
mp2d |
|- ( ( k e. ( 1 ..^ ( # ` F ) ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 99 |
98
|
ancoms |
|- ( ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) /\ k e. ( 1 ..^ ( # ` F ) ) ) -> ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) ) |
| 100 |
|
inelcm |
|- ( ( ( P ` k ) e. ( I ` ( F ` ( k - 1 ) ) ) /\ ( P ` k ) e. ( I ` ( F ` k ) ) ) -> ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) =/= (/) ) |
| 101 |
99 100
|
syl |
|- ( ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) /\ k e. ( 1 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) =/= (/) ) |
| 102 |
|
hashge1 |
|- ( ( ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) e. _V /\ ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) =/= (/) ) -> 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 103 |
7 101 102
|
sylancr |
|- ( ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) /\ k e. ( 1 ..^ ( # ` F ) ) ) -> 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 104 |
103
|
ralrimiva |
|- ( A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 105 |
104
|
3ad2ant3 |
|- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` i ) = ( P ` ( i + 1 ) ) , ( ( iEdg ` G ) ` ( F ` i ) ) = { ( P ` i ) } , { ( P ` i ) , ( P ` ( i + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` i ) ) ) ) -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |
| 106 |
5 105
|
biimtrdi |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) ) |
| 107 |
2 106
|
mpcom |
|- ( F ( Walks ` G ) P -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( I ` ( F ` ( k - 1 ) ) ) i^i ( I ` ( F ` k ) ) ) ) ) |