| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 2 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 3 | 1 | wlk1walk | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) | 
						
							| 4 |  | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐺  ∈  V  ∧  𝐹  ∈  V  ∧  𝑃  ∈  V ) ) | 
						
							| 5 | 4 | simp1d | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐺  ∈  V ) | 
						
							| 6 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 7 |  | nn0xnn0 | ⊢ ( 1  ∈  ℕ0  →  1  ∈  ℕ0* ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  1  ∈  ℕ0* ) | 
						
							| 9 | 1 | isewlk | ⊢ ( ( 𝐺  ∈  V  ∧  1  ∈  ℕ0*  ∧  𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 ) )  →  ( 𝐹  ∈  ( 𝐺  EdgWalks  1 )  ↔  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 10 | 5 8 2 9 | syl3anc | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  ( 𝐹  ∈  ( 𝐺  EdgWalks  1 )  ↔  ( 𝐹  ∈  Word  dom  ( iEdg ‘ 𝐺 )  ∧  ∀ 𝑘  ∈  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) 1  ≤  ( ♯ ‘ ( ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ ( 𝑘  −  1 ) ) )  ∩  ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) ) | 
						
							| 11 | 2 3 10 | mpbir2and | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃  →  𝐹  ∈  ( 𝐺  EdgWalks  1 ) ) |