Metamath Proof Explorer


Definition df-xps

Description: Define a binary product on structures. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)

Ref Expression
Assertion df-xps ×𝑠=rV,sVxBaser,yBasesx1𝑜y-1𝑠Scalarr𝑠r1𝑜s

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxps class×𝑠
1 vr setvarr
2 cvv classV
3 vs setvars
4 vx setvarx
5 cbs classBase
6 1 cv setvarr
7 6 5 cfv classBaser
8 vy setvary
9 3 cv setvars
10 9 5 cfv classBases
11 c0 class
12 4 cv setvarx
13 11 12 cop classx
14 c1o class1𝑜
15 8 cv setvary
16 14 15 cop class1𝑜y
17 13 16 cpr classx1𝑜y
18 4 8 7 10 17 cmpo classxBaser,yBasesx1𝑜y
19 18 ccnv classxBaser,yBasesx1𝑜y-1
20 cimas class𝑠
21 csca classScalar
22 6 21 cfv classScalarr
23 cprds class𝑠
24 11 6 cop classr
25 14 9 cop class1𝑜s
26 24 25 cpr classr1𝑜s
27 22 26 23 co classScalarr𝑠r1𝑜s
28 19 27 20 co classxBaser,yBasesx1𝑜y-1𝑠Scalarr𝑠r1𝑜s
29 1 3 2 2 28 cmpo classrV,sVxBaser,yBasesx1𝑜y-1𝑠Scalarr𝑠r1𝑜s
30 0 29 wceq wff×𝑠=rV,sVxBaser,yBasesx1𝑜y-1𝑠Scalarr𝑠r1𝑜s