| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cxps |
|- Xs. |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
vx |
|- x |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- r |
| 7 |
6 5
|
cfv |
|- ( Base ` r ) |
| 8 |
|
vy |
|- y |
| 9 |
3
|
cv |
|- s |
| 10 |
9 5
|
cfv |
|- ( Base ` s ) |
| 11 |
|
c0 |
|- (/) |
| 12 |
4
|
cv |
|- x |
| 13 |
11 12
|
cop |
|- <. (/) , x >. |
| 14 |
|
c1o |
|- 1o |
| 15 |
8
|
cv |
|- y |
| 16 |
14 15
|
cop |
|- <. 1o , y >. |
| 17 |
13 16
|
cpr |
|- { <. (/) , x >. , <. 1o , y >. } |
| 18 |
4 8 7 10 17
|
cmpo |
|- ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 19 |
18
|
ccnv |
|- `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 20 |
|
cimas |
|- "s |
| 21 |
|
csca |
|- Scalar |
| 22 |
6 21
|
cfv |
|- ( Scalar ` r ) |
| 23 |
|
cprds |
|- Xs_ |
| 24 |
11 6
|
cop |
|- <. (/) , r >. |
| 25 |
14 9
|
cop |
|- <. 1o , s >. |
| 26 |
24 25
|
cpr |
|- { <. (/) , r >. , <. 1o , s >. } |
| 27 |
22 26 23
|
co |
|- ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) |
| 28 |
19 27 20
|
co |
|- ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) |
| 29 |
1 3 2 2 28
|
cmpo |
|- ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |
| 30 |
0 29
|
wceq |
|- Xs. = ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |