Metamath Proof Explorer


Theorem df1o2

Description: Expanded value of the ordinal number 1. Definition 2.1 of Schloeder p. 4. (Contributed by NM, 4-Nov-2002)

Ref Expression
Assertion df1o2 1𝑜=

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 suc0 suc=
3 1 2 eqtri 1𝑜=