Metamath Proof Explorer


Theorem df2idl2rng

Description: Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025)

Ref Expression
Hypotheses df2idl2rng.u U=2IdealR
df2idl2rng.b B=BaseR
df2idl2rng.t ·˙=R
Assertion df2idl2rng RRngISubGrpRIUxByIx·˙yIy·˙xI

Proof

Step Hyp Ref Expression
1 df2idl2rng.u U=2IdealR
2 df2idl2rng.b B=BaseR
3 df2idl2rng.t ·˙=R
4 eqid LIdealR=LIdealR
5 4 2 3 dflidl2rng RRngISubGrpRILIdealRxByIx·˙yI
6 eqid LIdealopprR=LIdealopprR
7 6 2 3 isridlrng RRngISubGrpRILIdealopprRxByIy·˙xI
8 5 7 anbi12d RRngISubGrpRILIdealRILIdealopprRxByIx·˙yIxByIy·˙xI
9 eqid opprR=opprR
10 4 9 6 1 2idlelb IUILIdealRILIdealopprR
11 r19.26-2 xByIx·˙yIy·˙xIxByIx·˙yIxByIy·˙xI
12 8 10 11 3bitr4g RRngISubGrpRIUxByIx·˙yIy·˙xI