Metamath Proof Explorer


Theorem 2idlelb

Description: Membership in a two-sided ideal. Formerly part of proof for 2idlcpbl . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 20-Feb-2025)

Ref Expression
Hypotheses 2idlel.i I=LIdealR
2idlel.o O=opprR
2idlel.j J=LIdealO
2idlel.t T=2IdealR
Assertion 2idlelb UTUIUJ

Proof

Step Hyp Ref Expression
1 2idlel.i I=LIdealR
2 2idlel.o O=opprR
3 2idlel.j J=LIdealO
4 2idlel.t T=2IdealR
5 1 2 3 4 2idlval T=IJ
6 5 elin2 UTUIUJ