Metamath Proof Explorer


Theorem dfaiota2

Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in Quine p. 56. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion dfaiota2 ι = y | x φ x = y

Proof

Step Hyp Ref Expression
1 df-aiota ι = y | x | φ = y
2 absn x | φ = y x φ x = y
3 2 abbii y | x | φ = y = y | x φ x = y
4 3 inteqi y | x | φ = y = y | x φ x = y
5 1 4 eqtri ι = y | x φ x = y