Metamath Proof Explorer


Theorem dfaiota2

Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in Quine p. 56. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion dfaiota2 ι=y|xφx=y

Proof

Step Hyp Ref Expression
1 df-aiota ι=y|x|φ=y
2 absn x|φ=yxφx=y
3 2 abbii y|x|φ=y=y|xφx=y
4 3 inteqi y|x|φ=y=y|xφx=y
5 1 4 eqtri ι=y|xφx=y