Metamath Proof Explorer


Theorem dfaiota2

Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in Quine p. 56. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion dfaiota2
|- ( iota' x ph ) = |^| { y | A. x ( ph <-> x = y ) }

Proof

Step Hyp Ref Expression
1 df-aiota
 |-  ( iota' x ph ) = |^| { y | { x | ph } = { y } }
2 absn
 |-  ( { x | ph } = { y } <-> A. x ( ph <-> x = y ) )
3 2 abbii
 |-  { y | { x | ph } = { y } } = { y | A. x ( ph <-> x = y ) }
4 3 inteqi
 |-  |^| { y | { x | ph } = { y } } = |^| { y | A. x ( ph <-> x = y ) }
5 1 4 eqtri
 |-  ( iota' x ph ) = |^| { y | A. x ( ph <-> x = y ) }