Metamath Proof Explorer


Theorem dfaiota2

Description: Alternate definition of the alternate version of Russell's definition of a description binder. Definition 8.18 in Quine p. 56. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion dfaiota2 ( ℩' 𝑥 𝜑 ) = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }

Proof

Step Hyp Ref Expression
1 df-aiota ( ℩' 𝑥 𝜑 ) = { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } }
2 absn ( { 𝑥𝜑 } = { 𝑦 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
3 2 abbii { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }
4 3 inteqi { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }
5 1 4 eqtri ( ℩' 𝑥 𝜑 ) = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }