Metamath Proof Explorer


Theorem dfdm3

Description: Alternate definition of domain. Definition 6.5(1) of TakeutiZaring p. 24. (Contributed by NM, 28-Dec-1996)

Ref Expression
Assertion dfdm3 domA=x|yxyA

Proof

Step Hyp Ref Expression
1 df-dm domA=x|yxAy
2 df-br xAyxyA
3 2 exbii yxAyyxyA
4 3 abbii x|yxAy=x|yxyA
5 1 4 eqtri domA=x|yxyA