Metamath Proof Explorer


Theorem dfima3

Description: Alternate definition of image. Compare definition (d) of Enderton p. 44. (Contributed by NM, 14-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion dfima3 AB=y|xxBxyA

Proof

Step Hyp Ref Expression
1 dfima2 AB=y|xBxAy
2 df-br xAyxyA
3 2 rexbii xBxAyxBxyA
4 df-rex xBxyAxxBxyA
5 3 4 bitri xBxAyxxBxyA
6 5 abbii y|xBxAy=y|xxBxyA
7 1 6 eqtri AB=y|xxBxyA