Metamath Proof Explorer


Theorem dfmembpart2

Description: Alternate definition of the conventional membership case of partition. Partition A of X , Halmos p. 28: "A partition of X is a disjoint collection A of non-empty subsets of X whose union is X ", or Definition 35, Suppes p. 83., cf. https://oeis.org/A000110 . (Contributed by Peter Mazsa, 14-Aug-2021)

Ref Expression
Assertion dfmembpart2 Could not format assertion : No typesetting found for |- ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-membpart Could not format ( MembPart A <-> ( `' _E |` A ) Part A ) : No typesetting found for |- ( MembPart A <-> ( `' _E |` A ) Part A ) with typecode |-
2 df-part Could not format ( ( `' _E |` A ) Part A <-> ( Disj ( `' _E |` A ) /\ ( `' _E |` A ) DomainQs A ) ) : No typesetting found for |- ( ( `' _E |` A ) Part A <-> ( Disj ( `' _E |` A ) /\ ( `' _E |` A ) DomainQs A ) ) with typecode |-
3 df-eldisj ElDisjADisjE-1A
4 3 bicomi DisjE-1AElDisjA
5 cnvepresdmqs E-1ADomainQsA¬A
6 4 5 anbi12i DisjE-1AE-1ADomainQsAElDisjA¬A
7 1 2 6 3bitri Could not format ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) : No typesetting found for |- ( MembPart A <-> ( ElDisj A /\ -. (/) e. A ) ) with typecode |-