Metamath Proof Explorer


Theorem brparts

Description: Binary partitions relation. (Contributed by Peter Mazsa, 23-Jul-2021)

Ref Expression
Assertion brparts A V R Parts A R Disjs R DomainQss A

Proof

Step Hyp Ref Expression
1 df-parts Parts = DomainQss Disjs
2 1 eqres A V R Parts A R Disjs R DomainQss A